本文整理汇总了C#中System.IntPtr.Add方法的典型用法代码示例。如果您正苦于以下问题:C# IntPtr.Add方法的具体用法?C# IntPtr.Add怎么用?C# IntPtr.Add使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.IntPtr
的用法示例。
在下文中一共展示了IntPtr.Add方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: MemSet
/// <summary>
/// Helper function for implementing memset. Could be more efficient if we
/// could P/Invoke or call some otherwise native code to do this.
/// </summary>
private static IntPtr MemSet(IntPtr dest, byte value, IntPtr length) {
IntPtr end = dest.Add(length.ToInt32());
for (IntPtr cur = dest; cur != end; cur = new IntPtr(cur.ToInt64() + 1)) {
Marshal.WriteByte(cur, value);
}
return dest;
}
示例2: GetPyType
internal static PyType GetPyType(IntPtr po, bool derived)
{
if (!_initialized)
InitializeStructures();
if (po == IntPtr.Zero)
return PyType.Invalid;
PyType type;
var pyType = Marshal.ReadIntPtr(po.Add(4));
if (!_types.TryGetValue(pyType, out type))
{
type = GetPyType(pyType, true);
_types.Add(pyType, type);
return type;
}
if (derived)
{
var s = type.ToString();
type = (PyType) Enum.Parse(typeof (PyType), "Derived" + s);
}
return type;
}
示例3: CopyUnmanagedMemory
internal static void CopyUnmanagedMemory(IntPtr srcPtr, int srcOffset, IntPtr dstPtr, int dstOffset, int count)
{
srcPtr = srcPtr.Add<byte>( srcOffset );
dstPtr = dstPtr.Add<byte>( dstOffset );
memcpy(dstPtr, srcPtr, (UInt32)count );
}
示例4: Add
/// <summary>
/// Adds the specified integer to the module address supplied.
/// </summary>
/// <param name="addressToRebase">The address to rebase to the module address.</param>
/// <param name="moduleAddress">The address of the module being rebased to.</param>
/// <returns></returns>
public static IntPtr Add(this int addressToRebase, IntPtr moduleAddress) => moduleAddress.Add(addressToRebase);
示例5: Unload
public override bool Unload(IntPtr hModule, IntPtr hProcess)
{
// Unloading a manually mapped file is fairly straightforward. There is no need to call FreeLibrary or anything
// because the file was never actually injected using LoadLibrary and doesn't need to clear any PEB entries etc.
// basically just call the Entry Point again with DLL_PROCESS_DETACH flag and not-null for the lpReserved parameter
// and then VirtualFree the remote memory.
ClearErrors();
if (hModule.IsNull())
throw new ArgumentNullException("hModule", "Invalid module handle");
if (hProcess.IsNull() || hProcess.Compare(-1))
throw new ArgumentException("Invalid process handle.", "hProcess");
IntPtr pStub = IntPtr.Zero;
uint nBytes = 0;
try
{
uint entry = FindEntryPoint(hProcess, hModule);
if (entry != 0)
{
var stub = (byte[])DLLMAIN_STUB.Clone();
BitConverter.GetBytes(hModule.ToInt32()).CopyTo(stub, 0x0B);
BitConverter.GetBytes((uint)0).CopyTo(stub, 0x06);
BitConverter.GetBytes((uint)1000).CopyTo(stub, 0x01);
pStub = WinAPI.VirtualAllocEx(hProcess, IntPtr.Zero, (uint)DLLMAIN_STUB.Length, 0x1000 | 0x2000, 0x40);
if (pStub.IsNull() || (!WinAPI.WriteProcessMemory(hProcess, pStub, stub, stub.Length, out nBytes) || nBytes != (uint)stub.Length))
throw new InvalidOperationException("Unable to write stub to the remote process.");
IntPtr hStubThread = WinAPI.CreateRemoteThread(hProcess, 0, 0, pStub, (uint)hModule.Add(entry).ToInt32(), 0, 0);
if (WinAPI.WaitForSingleObject(hStubThread, 5000) == 0x0L)
{
WinAPI.VirtualFreeEx(hProcess, pStub, 0, 0x8000);
WinAPI.CloseHandle(hStubThread);
return WinAPI.VirtualFreeEx(hProcess, hModule, 0, 0x8000);
}
return false;
}
else
{
return WinAPI.VirtualFreeEx(hProcess, hModule, 0, 0x8000);
}
}
catch (Exception e)
{
SetLastError(e);
return false;
}
}
示例6: MapSections
private static void MapSections(PortableExecutable image, IntPtr hProcess, IntPtr pModule)
{
//very straightforward really. Just iterate through all the sections and map them to their desired virtual addresses in the remote process.
//I'm not 100% sure about how well masking the section header characteristics and passing them off as memory protection constants goes. But
//so far I haven't hit any issues. (i.e a section header with characteristics "IMAGE_SCN_TYPE_NO_PAD" will set "PAGE_WRITECOPY" memory protection.
byte[] databuffer;
uint n;
foreach (var pSecHd in image.EnumSectionHeaders())
{
databuffer = new byte[pSecHd.SizeOfRawData];
if (image.Read(pSecHd.PointerToRawData, SeekOrigin.Begin, databuffer))
{
if ((pSecHd.Characteristics & 0x02000000) == 0) //can actually ignore this section (usually the reloc section)
{
WinAPI.WriteProcessMemory(hProcess, pModule.Add(pSecHd.VirtualAddress), databuffer, databuffer.Length, out n);
WinAPI.VirtualProtectEx(hProcess, pModule.Add(pSecHd.VirtualAddress), pSecHd.SizeOfRawData, pSecHd.Characteristics & 0x00FFFFFF, out n);
}
}
else
{
throw image.GetLastError();
}
}
}
示例7: FindEntryPoint
/**
* Find the entry point of a loaded module
* based on its Base Address. Reverses the PE
* structure to find the entry point
*/
private static uint FindEntryPoint(IntPtr hProcess, IntPtr hModule)
{
if (hProcess.IsNull() || hProcess.Compare(-1))
throw new ArgumentException("Invalid process handle.", "hProcess");
if (hModule.IsNull())
throw new ArgumentException("Invalid module handle.", "hModule");
byte[] bDosHeader = WinAPI.ReadRemoteMemory(hProcess, hModule, (uint)Marshal.SizeOf(typeof(IMAGE_DOS_HEADER)));
if (bDosHeader != null)
{
ushort e_magic = BitConverter.ToUInt16(bDosHeader, 0);
uint e_lfanew = BitConverter.ToUInt32(bDosHeader, 0x3C);
if (e_magic == 23117)
{
byte[] bNtHeader = WinAPI.ReadRemoteMemory(hProcess, hModule.Add(e_lfanew), (uint)Marshal.SizeOf(typeof(IMAGE_NT_HEADER32)));
if (bNtHeader != null && BitConverter.ToUInt32(bNtHeader, 0) == 17744)
{
IMAGE_NT_HEADER32 ntHd = default(IMAGE_NT_HEADER32);
using (var buffer = new UnmanagedBuffer(256))
if (buffer.Translate<IMAGE_NT_HEADER32>(bNtHeader, out ntHd))
return ntHd.OptionalHeader.AddressOfEntryPoint;
}
}
}
return 0;
}
示例8: ReadRemoteString
public static string ReadRemoteString(IntPtr hProcess, IntPtr lpAddress, Encoding encoding = null)
{
if (encoding == null)
encoding = Encoding.ASCII;
var builder = new StringBuilder(); //easiest and cleanest way to build an unknown-length string.
byte[] buffer = new byte[256];
uint nbytes = 0;
int terminator = -1, index = 0;
while (terminator < 0 && ReadProcessMemory(hProcess, lpAddress, buffer, buffer.Length, out nbytes) && nbytes > 0)
{
lpAddress = lpAddress.Add(nbytes); //advance where we're reading from.
index = builder.Length; //micro-optimization for .IndexOf
builder.Append(encoding.GetString(buffer, 0, (int)nbytes)); //append the data to the StringBuilder
terminator = builder.ToString().IndexOf('\0', index); //check if there's a null-byte in the string yet (strings are null-terminated)
}
return builder.ToString().Substring(0, terminator); //return the data up til the null terminator.
}
示例9: SearchExports
private static int SearchExports(IntPtr hProcess, IntPtr hModule, byte[] exports, string name)
{
uint cntExports = BitConverter.ToUInt32(exports, 0x18); //number of named exported functions
uint ptrNameTable = BitConverter.ToUInt32(exports, 0x20); //pointer to the export name table
int rva = -1;
if (cntExports > 0 && ptrNameTable > 0)
{
byte[] rawPtrs = ReadRemoteMemory(hProcess, hModule.Add(ptrNameTable), cntExports << 2); //be lazy and read all the name pointers at once.
if (rawPtrs != null)
{
//quickly convert that series of bytes into pointer values that make sense.
uint[] namePtrs = new uint[cntExports];
for (int i = 0; i < namePtrs.Length; i++)
namePtrs[i] = BitConverter.ToUInt32(rawPtrs, i << 2);
//binary search, huzzah! Part of the PE specification is that all exported functions are ordered lexicographically in a PE file.
int start = 0, end = namePtrs.Length - 1, middle = 0;
string curvalue = string.Empty;
//basically just search through all the exports looking for the specified function
while (start >= 0 && start <= end && rva == -1)
{
middle = (start + end) / 2;
curvalue = ReadRemoteString(hProcess, hModule.Add(namePtrs[middle]));
if (curvalue.Equals(name))
rva = middle;
else if (string.CompareOrdinal(curvalue, name) < 0)
start = middle - 1;
else
end = middle + 1;
}
}
}
return rva;
}
示例10: GetProcAddressEx
/*
* This is my GetProcAddressEx function. Basically, it does exactly what GetProcAddress does,
* but for a module in a remote process. It looks up the module, and from there parses the lexicographically
* ordered export function table (commonly known as the EAT). It calculates based on ordinal offset.
* However, if you find this method doesn't work for you for whatever reason (i rushed the binary search algorithm)
* i've provided another GetProcAddressEx method below with the same parameters which basically just calls the 'official'
* GetProcAddress function from within the remote process and captures the return. Up to you -Jason
*/
public static IntPtr GetProcAddressEx(IntPtr hProc, IntPtr hModule, object lpProcName)
{
IntPtr procAddress = IntPtr.Zero;
byte[] pDosHd = ReadRemoteMemory(hProc, hModule, 0x40); //attempt to read the DOS header from memory
if (pDosHd != null && BitConverter.ToUInt16(pDosHd, 0) == 0x5A4D) //compare the expected DOS "MZ" signature to whatever we just read
{
uint e_lfanew = BitConverter.ToUInt32(pDosHd, 0x3C); //read the e_lfanew number
if (e_lfanew > 0)
{
byte[] pNtHd = ReadRemoteMemory(hProc, hModule.Add(e_lfanew), 0x108); //read the NT_HEADERS.
if (pNtHd != null && BitConverter.ToUInt32(pNtHd, 0) == 0x4550) //check the NT_HEADERS signature (PE\0\0)
{
uint expDirPtr = BitConverter.ToUInt32(pNtHd, 0x78); //get the pointer to the export directory (first data directory)
uint expDirSize = BitConverter.ToUInt32(pNtHd, 0x7C);
if (expDirPtr > 0 && expDirSize > 0) //does this module even export functions?
{
byte[] pExpDir = ReadRemoteMemory(hProc, hModule.Add(expDirPtr), 0x28); //Read the export directory from the process
uint pEat = BitConverter.ToUInt32(pExpDir, 0x1C); //pointer to the export address table
uint pOrd = BitConverter.ToUInt32(pExpDir, 0x24); //pointer to the ordinal table.
uint nFunc = BitConverter.ToUInt32(pExpDir, 0x14);
int ord = -1;
if (pEat > 0 && pOrd > 0)
{
if (lpProcName.GetType().Equals(typeof(string)))
{
int index = SearchExports(hProc, hModule, pExpDir, (string)lpProcName); //search the exported names table for the specified function
if (index > -1) //check the function was found
{
byte[] bOrd = ReadRemoteMemory(hProc, hModule.Add(pOrd + (index << 1)), 0x2); //read the ordinal number for the function from the process
ord = (int)(bOrd == null ? -1 : BitConverter.ToUInt16(bOrd, 0)); //get the ordinal number for this function
}
}
else if (lpProcName.GetType().Equals(typeof(short)) || lpProcName.GetType().Equals(typeof(ushort)))
{
ord = int.Parse(lpProcName.ToString());
}
if (ord > -1 && ord < nFunc) //just a final check to make sure we have a valid ordinal
{
//reference the Export Address Table to find the function address for our ordinal (don't forget to factor in the ordinal base)
//Unlike zero-based indexing, the 'ordinal number' indexing starts at 1, so subtract 1 from the ordbase to get zero-based index
byte[] addr = ReadRemoteMemory(hProc, hModule.Add(pEat + (ord << 2)), 0x4);
if (addr != null)
{
uint pFunction = BitConverter.ToUInt32(addr, 0);
if (pFunction >= expDirPtr && pFunction < (expDirPtr + expDirSize)) //forwarded.
{
string forward = ReadRemoteString(hProc, hModule.Add(pFunction));
if (!string.IsNullOrEmpty(forward) && forward.Contains("."))
procAddress = GetProcAddressEx(hProc, GetModuleHandleEx(hProc, forward.Split('.')[0]), forward.Split('.')[1]);
}
else
{
procAddress = hModule.Add(pFunction);
}
}
}
}
}
}
}
}
return procAddress;
}