本文整理汇总了C#中System.Double.Min方法的典型用法代码示例。如果您正苦于以下问题:C# Double.Min方法的具体用法?C# Double.Min怎么用?C# Double.Min使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Double
的用法示例。
在下文中一共展示了Double.Min方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Main
public static void Main(string[] args)
{
string[] month = new string[12]{"Jan","Feb","Mar", "Apr", "may","Jun","Jul","Aug","Sep","Oct","Nov", "Dec"};
Double[] sales = new Double[12];
double sum = 0;
Console.WriteLine("Enter the sales");
for(int i=0;i<month.Length;i++)
{
sales[i] = Convert.ToDouble(Console.ReadLine());
sum = sum + sales[i];
}
Console.WriteLine("S.no \t Month \t Sales");
Console.WriteLine("-------------------------------");
for(int j=0;j<month.Length;j++)
{
Console.WriteLine("{0} \t {1} \t\t {2}",j, month[j], sales[j]);
}
Console.WriteLine("Maximum sales recorded is on {0}", sales.Max());
Console.WriteLine("Minimum sales recorded is on {0}", sales.Min());
Console.WriteLine("Average sales recorded is on {0}", (sum/month.Length));
}
示例2: ImageKuwaharaFilterGS
//.........这里部分代码省略.........
tmpj++;
}
tmpi++;
tmpj = 0;
}
int[] roivector1 = new int[FilterSize * FilterSize];
int[] roivector2 = new int[FilterSize * FilterSize];
int[] roivector3 = new int[FilterSize * FilterSize];
int[] roivector4 = new int[FilterSize * FilterSize];
int tmp1 = 0;
for (int i = 0; i < FilterSize; i++)
{
for (int j = 0; j < FilterSize; j++)
{
roivector1[tmp1] = roi[i, j];
tmp1++;
}
}
int tmp2 = 0;
for (int i = 0; i < FilterSize; i++)
{
for (int j = (FilterSize - 1); j < roi.GetLength(1); j++)
{
roivector2[tmp2] = roi[i, j];
tmp2++;
}
}
int tmp3 = 0;
for (int i = (FilterSize - 1); i < roi.GetLength(0); i++)
{
for (int j = 0; j < FilterSize; j++)
{
roivector3[tmp3] = roi[i, j];
tmp3++;
}
}
int tmp4 = 0;
for (int i = (FilterSize - 1); i < roi.GetLength(0); i++)
{
for (int j = (FilterSize - 1); j < roi.GetLength(1); j++)
{
roivector4[tmp4] = roi[i, j];
tmp4++;
}
}
Double[] avg = new Double[4] { 0, 0, 0, 0 };
Double[] var = new Double[4] { 0, 0, 0, 0 };
Double[] std = new Double[4] { 0, 0, 0, 0 };
for (int i = 0; i < FilterSize * FilterSize; i++)
{
avg[0] += Convert.ToDouble(roivector1[i]) / (FilterSize * FilterSize);
avg[1] += Convert.ToDouble(roivector2[i]) / (FilterSize * FilterSize);
avg[2] += Convert.ToDouble(roivector3[i]) / (FilterSize * FilterSize);
avg[3] += Convert.ToDouble(roivector4[i]) / (FilterSize * FilterSize);
}
for (int i = 0; i < FilterSize * FilterSize; i++)
{
var[0] += Math.Pow((Convert.ToDouble(roivector1[i]) - avg[0]), 2) / (FilterSize * FilterSize);
var[1] += Math.Pow((Convert.ToDouble(roivector2[i]) - avg[1]), 2) / (FilterSize * FilterSize);
var[2] += Math.Pow((Convert.ToDouble(roivector3[i]) - avg[2]), 2) / (FilterSize * FilterSize);
var[3] += Math.Pow((Convert.ToDouble(roivector4[i]) - avg[3]), 2) / (FilterSize * FilterSize);
}
int minIndex = System.Array.IndexOf(var, var.Min());
newValue = (int)avg[minIndex];
if (newValue > 255) newValue = 255;
if (newValue < 0) newValue = 0;
image2.SetPixel(m, n, Color.FromArgb(255, newValue, newValue, newValue));
}
}
return image2;
}
示例3: ShowTrainingData
//Method that updates the chart with the data vectors
public void ShowTrainingData(Double[][] classA, Double[][] classB)
{
//create data series from the vectors
var class1 = AlgorithmHelpers.JaggedToMD(classA);
var class2 = AlgorithmHelpers.JaggedToMD(classB);
//Compute the minimum and maximum numbers for the X axis
var maxX = classA.Max(0)[0] > classB.Max(0)[0] ? classA.Max(0)[0] : classB.Max(0)[0];
var minX = classA.Min(0)[0] < classB.Min(0)[0] ? classA.Min(0)[0] : classB.Min(0)[0];
//Update the range of the X axis with the max and the min
perceChart.RangeX = new Range((float)minX, (float)maxX);
nnChart.RangeX = new Range((float)minX, (float)maxX);
lsChart.RangeX = new Range((float)minX, (float)maxX);
//Update the Perceptron chart with the loaded data
perceChart.UpdateDataSeries("class1", class1);
perceChart.UpdateDataSeries("class2", class2);
//Update the BackPropagation chart with the loaded data
nnChart.UpdateDataSeries("class1", class1);
nnChart.UpdateDataSeries("class2", class2);
//Update the LS chart
lsChart.UpdateDataSeries("class1", class1);
lsChart.UpdateDataSeries("class2", class2);
}
示例4: ImageKuwaharaFilterColor
//.........这里部分代码省略.........
{
for (int j = 0; j < FilterSize; j++)
{
roivector3[0, tmp3] = roi[0, i, j];
roivector3[1, tmp3] = roi[1, i, j];
roivector3[2, tmp3] = roi[2, i, j];
tmp3++;
}
}
int tmp4 = 0;
for (int i = (FilterSize - 1); i < roi.GetLength(0); i++)
{
for (int j = (FilterSize - 1); j < roi.GetLength(1); j++)
{
roivector4[0, tmp4] = roi[0, i, j];
roivector4[1, tmp4] = roi[1, i, j];
roivector4[2, tmp4] = roi[2, i, j];
tmp4++;
}
}
// tutaj
Double[] avgR = new Double[4] { 0, 0, 0, 0 };
Double[] avgG = new Double[4] { 0, 0, 0, 0 };
Double[] avgB = new Double[4] { 0, 0, 0, 0 };
Double[] varR = new Double[4] { 0, 0, 0, 0 };
Double[] varG = new Double[4] { 0, 0, 0, 0 };
Double[] varB = new Double[4] { 0, 0, 0, 0 };
for (int i = 0; i < FilterSize * FilterSize; i++)
{
avgR[0] += Convert.ToDouble(roivector1[0, i]) / (FilterSize * FilterSize);
avgR[1] += Convert.ToDouble(roivector2[0, i]) / (FilterSize * FilterSize);
avgR[2] += Convert.ToDouble(roivector3[0, i]) / (FilterSize * FilterSize);
avgR[3] += Convert.ToDouble(roivector4[0, i]) / (FilterSize * FilterSize);
avgG[0] += Convert.ToDouble(roivector1[1, i]) / (FilterSize * FilterSize);
avgG[1] += Convert.ToDouble(roivector2[1, i]) / (FilterSize * FilterSize);
avgG[2] += Convert.ToDouble(roivector3[1, i]) / (FilterSize * FilterSize);
avgG[3] += Convert.ToDouble(roivector4[1, i]) / (FilterSize * FilterSize);
avgB[0] += Convert.ToDouble(roivector1[2, i]) / (FilterSize * FilterSize);
avgB[1] += Convert.ToDouble(roivector2[2, i]) / (FilterSize * FilterSize);
avgB[2] += Convert.ToDouble(roivector3[2, i]) / (FilterSize * FilterSize);
avgB[3] += Convert.ToDouble(roivector4[2, i]) / (FilterSize * FilterSize);
}
for (int i = 0; i < FilterSize * FilterSize; i++)
{
varR[0] += Math.Pow((Convert.ToDouble(roivector1[0, i]) - avgR[0]), 2) / (FilterSize * FilterSize);
varR[1] += Math.Pow((Convert.ToDouble(roivector2[0, i]) - avgR[1]), 2) / (FilterSize * FilterSize);
varR[2] += Math.Pow((Convert.ToDouble(roivector3[0, i]) - avgR[2]), 2) / (FilterSize * FilterSize);
varR[3] += Math.Pow((Convert.ToDouble(roivector4[0, i]) - avgR[3]), 2) / (FilterSize * FilterSize);
varG[0] += Math.Pow((Convert.ToDouble(roivector1[1, i]) - avgG[0]), 2) / (FilterSize * FilterSize);
varG[1] += Math.Pow((Convert.ToDouble(roivector2[1, i]) - avgG[1]), 2) / (FilterSize * FilterSize);
varG[2] += Math.Pow((Convert.ToDouble(roivector3[1, i]) - avgG[2]), 2) / (FilterSize * FilterSize);
varG[3] += Math.Pow((Convert.ToDouble(roivector4[1, i]) - avgG[3]), 2) / (FilterSize * FilterSize);
varB[0] += Math.Pow((Convert.ToDouble(roivector1[2, i]) - avgB[0]), 2) / (FilterSize * FilterSize);
varB[1] += Math.Pow((Convert.ToDouble(roivector2[2, i]) - avgB[1]), 2) / (FilterSize * FilterSize);
varB[2] += Math.Pow((Convert.ToDouble(roivector3[2, i]) - avgB[2]), 2) / (FilterSize * FilterSize);
varB[3] += Math.Pow((Convert.ToDouble(roivector4[2, i]) - avgB[3]), 2) / (FilterSize * FilterSize);
}
int minIndexR = System.Array.IndexOf(varR, varR.Min());
int minIndexG = System.Array.IndexOf(varG, varG.Min());
int minIndexB = System.Array.IndexOf(varB, varB.Min());
newValueR = (int)avgR[minIndexR];
if (newValueR > 255) newValueR = 255;
if (newValueR < 0) newValueR = 0;
newValueG = (int)avgG[minIndexG];
if (newValueG > 255) newValueG = 255;
if (newValueG < 0) newValueG = 0;
newValueB = (int)avgB[minIndexB];
if (newValueB > 255) newValueB = 255;
if (newValueB < 0) newValueB = 0;
image2.SetPixel(m, n, Color.FromArgb(255, newValueR, newValueG, newValueB));
}
}
return image2;
}