当前位置: 首页>>代码示例>>C#>>正文


C# Coordinate.Equals方法代码示例

本文整理汇总了C#中System.Coordinate.Equals方法的典型用法代码示例。如果您正苦于以下问题:C# Coordinate.Equals方法的具体用法?C# Coordinate.Equals怎么用?C# Coordinate.Equals使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在System.Coordinate的用法示例。


在下文中一共展示了Coordinate.Equals方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Equals

 public void Equals()
 {
     var c1 = new Coordinate<int>(13, 14);
       var c2 = new Coordinate<int>(c1);
       var c3 = new Coordinate<int>(23, 24);
       Assert.IsTrue(c1.Equals(c2));
       Assert.IsFalse(c1.Equals(c3));
 }
开发者ID:unhammer,项目名称:gimp-sharp,代码行数:8,代码来源:TestCoordinate.cs

示例2: ComputeIntersection

        /// <summary>
        /// 
        /// </summary>
        /// <param name="p"></param>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        public override void ComputeIntersection(Coordinate p, Coordinate p1, Coordinate p2) 
        {
            double a1;
            double b1;
            double c1;
            /*
            *  Coefficients of line eqns.
            */

            double r;
            /*
            *  'Sign' values
            */

            IsProper = false;

            /*
            *  Compute a1, b1, c1, where line joining points 1 and 2
            *  is "a1 x  +  b1 y  +  c1  =  0".
            */
            a1 = p2.Y - p1.Y;
            b1 = p1.X - p2.X;
            c1 = p2.X * p1.Y - p1.X * p2.Y;

            /*
            *  Compute r3 and r4.
            */
            r = a1 * p.X + b1 * p.Y + c1;

            // if r != 0 the point does not lie on the line
            if (r != 0) 
            {
                Result = NoIntersection;
                return;
            }

            // Point lies on line - check to see whether it lies in line segment.

            double dist = RParameter(p1, p2, p);
            if (dist < 0.0 || dist > 1.0)
            {
                Result = NoIntersection;
                return;
            }

            IsProper = true;
            if (p.Equals(p1) || p.Equals(p2))             
                IsProper = false;
            
            Result = PointIntersection;
        }
开发者ID:Walt-D-Cat,项目名称:NetTopologySuite,代码行数:57,代码来源:NonRobustLineIntersector.cs

示例3: DifferentTypes

        public void DifferentTypes()
        {
            var c1 = new Coordinate<int>(13, 14);
              var c2 = new Coordinate<double>(13, 14);

              Assert.IsFalse(c1.Equals(c2));
        }
开发者ID:unhammer,项目名称:gimp-sharp,代码行数:7,代码来源:TestCoordinate.cs

示例4: ComputeEdgeDistance

        /// <summary> 
        /// Computes the "edge distance" of an intersection point p along a segment.
        /// The edge distance is a metric of the point along the edge.
        /// The metric used is a robust and easy to compute metric function.
        /// It is not equivalent to the usual Euclidean metric.
        /// It relies on the fact that either the x or the y ordinates of the
        /// points in the edge are unique, depending on whether the edge is longer in
        /// the horizontal or vertical direction.
        /// NOTE: This function may produce incorrect distances
        /// for inputs where p is not precisely on p1-p2
        /// (E.g. p = (139,9) p1 = (139,10), p2 = (280,1) produces distanct 0.0, which is incorrect.
        /// My hypothesis is that the function is safe to use for points which are the
        /// result of rounding points which lie on the line, but not safe to use for truncated points.
        /// </summary>
        public static double ComputeEdgeDistance(Coordinate p, Coordinate p0, Coordinate p1)
        {
            var dx = Math.Abs(p1.X - p0.X);
            var dy = Math.Abs(p1.Y - p0.Y);

            var dist = -1.0;   // sentinel value
            if (p.Equals(p0)) 
                dist = 0.0;            
            else if (p.Equals(p1)) 
            {
                dist = dx > dy ? dx : dy;
            }
            else 
            {
                double pdx = Math.Abs(p.X - p0.X);
                double pdy = Math.Abs(p.Y - p0.Y);
                dist = dx > dy ? pdx : pdy;

                // <FIX>: hack to ensure that non-endpoints always have a non-zero distance
                if (dist == 0.0 && ! p.Equals2D(p0))                
                    dist = Math.Max(pdx, pdy);
                
            }
            Assert.IsTrue(!(dist == 0.0 && ! p.Equals(p0)), "Bad distance calculation");
            return dist;
        }
开发者ID:Walt-D-Cat,项目名称:NetTopologySuite,代码行数:40,代码来源:LineIntersector.cs

示例5: ComputeIntersection

 /// <summary>
 /// 
 /// </summary>
 /// <param name="p"></param>
 /// <param name="p1"></param>
 /// <param name="p2"></param>
 public override void ComputeIntersection(Coordinate p, Coordinate p1, Coordinate p2) 
 {
     IsProper = false;
     // do between check first, since it is faster than the orientation test
     if(Envelope.Intersects(p1, p2, p)) 
     {
         if((CGAlgorithms.OrientationIndex(p1, p2, p) == 0) && (CGAlgorithms.OrientationIndex(p2, p1, p) == 0)) 
         {
             IsProper = true;
             if (p.Equals(p1) || p.Equals(p2))
                 IsProper = false;
             Result = IntersectionTypes.PointIntersection;
             return;
         }
     }
     Result = IntersectionTypes.NoIntersection;
 }
开发者ID:zhongshuiyuan,项目名称:mapwindowsix,代码行数:23,代码来源:RobustLineIntersector.cs

示例6: CloseRing

 /// <summary>
 /// Automatically closes the ring (if it not alread is).
 /// </summary>
 public void CloseRing()
 {
     if (_ptList.Count < 1) return;
     var startPt = new Coordinate(_ptList[0]);
     var lastPt = _ptList[_ptList.Count - 1];
     /*Coordinate last2Pt = null;
       if (ptList.Count >= 2)
           last2Pt = (Coordinate)ptList[ptList.Count - 2];*/
     if (startPt.Equals(lastPt)) return;
     _ptList.Add(startPt);
 }
开发者ID:ste10k41,项目名称:nettopologysuite,代码行数:14,代码来源:OffsetCurveVertexList.cs

示例7: TestEquals

        public void TestEquals()
        {
            Coordinate c1 = new Coordinate(1, 2, 3);
            const string s = "Not a coordinate";
            Assert.IsFalse(c1.Equals(s));

            Coordinate c2 = new Coordinate(1, 2, 3);
            Assert.IsTrue(c1.Equals2D(c2));

            Coordinate c3 = new Coordinate(1, 22, 3);
            Assert.IsFalse(c1.Equals2D(c3));
        }
开发者ID:Walt-D-Cat,项目名称:NetTopologySuite,代码行数:12,代码来源:CoordinateTest.cs

示例8: DiffCoordinateNotEquals

        public void DiffCoordinateNotEquals()
        {
            //arrange
            Coordinate first = new Coordinate(1, 1);
            Coordinate second = new Coordinate(2, 2);
            bool expected = false;

            //act
            bool actual = first.Equals(second);

            //assert
            Assert.AreEqual(expected, actual);
        }
开发者ID:Hdbcoding,项目名称:GoGame,代码行数:13,代码来源:CoordinateTests.cs

示例9: NonRobustComputeEdgeDistance

 /// <summary>
 /// This function is non-robust, since it may compute the square of large numbers.
 /// Currently not sure how to improve this.
 /// </summary>
 public static double NonRobustComputeEdgeDistance(Coordinate p, Coordinate p1, Coordinate p2)
 {
     double dx = p.X - p1.X;
     double dy = p.Y - p1.Y;
     double dist = Math.Sqrt(dx * dx + dy * dy);   // dummy value
     Assert.IsTrue(! (dist == 0.0 && ! p.Equals(p1)), "Invalid distance calculation");
     return dist;
 }
开发者ID:Walt-D-Cat,项目名称:NetTopologySuite,代码行数:12,代码来源:LineIntersector.cs

示例10: IntersectsToleranceSquare

        /// <summary>
        /// Tests whether the segment p0-p1 intersects the hot pixel tolerance square.
        /// Because the tolerance square point set is partially open (along the
        /// top and right) the test needs to be more sophisticated than
        /// simply checking for any intersection.  However, it
        /// can take advantage of the fact that because the hot pixel edges
        /// do not lie on the coordinate grid.  It is sufficient to check
        /// if there is at least one of:
        ///  - a proper intersection with the segment and any hot pixel edge.
        ///  - an intersection between the segment and both the left and bottom edges.
        ///  - an intersection between a segment endpoint and the hot pixel coordinate.
        /// </summary>
        /// <param name="p0"></param>
        /// <param name="p1"></param>
        /// <returns></returns>
        private bool IntersectsToleranceSquare(Coordinate p0, Coordinate p1)
        {
            bool intersectsLeft = false;
            bool intersectsBottom = false;

            _li.ComputeIntersection(p0, p1, _corner[0], _corner[1]);
            if (_li.IsProper) return true;

            _li.ComputeIntersection(p0, p1, _corner[1], _corner[2]);
            if (_li.IsProper) return true;
            if (_li.HasIntersection) intersectsLeft = true;

            _li.ComputeIntersection(p0, p1, _corner[2], _corner[3]);
            if (_li.IsProper) return true;
            if (_li.HasIntersection) intersectsBottom = true;

            _li.ComputeIntersection(p0, p1, _corner[3], _corner[0]);
            if (_li.IsProper) return true;

            if (intersectsLeft && intersectsBottom) return true;

            if (p0.Equals(_pt)) return true;
            if (p1.Equals(_pt)) return true;

            return false;
        }
开发者ID:DIVEROVIEDO,项目名称:DotSpatial,代码行数:41,代码来源:HotPixel.cs

示例11: doTestCoordinateHash

 private void doTestCoordinateHash(bool equal, Coordinate a, Coordinate b) {
     Assert.AreEqual(equal, a.Equals(b));
     Assert.AreEqual(equal, a.GetHashCode() == b.GetHashCode());
 }
开发者ID:ste10k41,项目名称:nettopologysuite,代码行数:4,代码来源:MiscellaneousTest2.cs

示例12: ComputeIntersect

        /// <summary>
        /// 
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <param name="p3"></param>
        /// <param name="p4"></param>
        /// <returns></returns>
        public override IntersectionTypes ComputeIntersect(Coordinate p1, Coordinate p2, Coordinate p3, Coordinate p4) 
        {
            /*
            *  Coefficients of line eqns.
            */

            /*
            *  'Sign' values
            */
            
            IsProper = false;

            /*
            *  Compute a1, b1, c1, where line joining points 1 and 2
            *  is "a1 x  +  b1 y  +  c1  =  0".
            */
            double a1 = p2.Y - p1.Y;
            double b1 = p1.X - p2.X;
            double c1 = p2.X * p1.Y - p1.X * p2.Y;

            /*
            *  Compute r3 and r4.
            */
            double r3 = a1 * p3.X + b1 * p3.Y + c1;
            double r4 = a1 * p4.X + b1 * p4.Y + c1;

            /*
            *  Check signs of r3 and r4.  If both point 3 and point 4 lie on
            *  same side of line 1, the line segments do not intersect.
            */
            if (r3 != 0 && r4 != 0 && IsSameSignAndNonZero(r3, r4))
            {
                return IntersectionTypes.NoIntersection;
            }

            /*
            *  Compute a2, b2, c2
            */
            double a2 = p4.Y - p3.Y;
            double b2 = p3.X - p4.X;
            double c2 = p4.X * p3.Y - p3.X * p4.Y;

            /*
            *  Compute r1 and r2
            */
            double r1 = a2 * p1.X + b2 * p1.Y + c2;
            double r2 = a2 * p2.X + b2 * p2.Y + c2;

            /*
            *  Check signs of r1 and r2.  If both point 1 and point 2 lie
            *  on same side of second line segment, the line segments do
            *  not intersect.
            */
            if (r1 != 0 && r2 != 0 && IsSameSignAndNonZero(r1, r2))
            {
                return IntersectionTypes.NoIntersection;
            }

            /*
            *  Line segments intersect: compute intersection point.
            */
            double denom = a1 * b2 - a2 * b1;
            if (denom == 0) 
                return ComputeCollinearIntersection(p1, p2, p3, p4);
            
            double numX = b1 * c2 - b2 * c1;
            double x = numX / denom;

            double numY = a2 * c1 - a1 * c2;
            double y = numY / denom;

            PointA = new Coordinate(x, y);

            // check if this is a proper intersection BEFORE truncating values,
            // to avoid spurious equality comparisons with endpoints
            IsProper = true;
            if (PointA.Equals(p1) || PointA.Equals(p2) || PointA.Equals(p3) || PointA.Equals(p4))             
                IsProper = false;            

            // truncate computed point to precision grid            
            if (PrecisionModel != null)
                PrecisionModel.MakePrecise(PointA);
            
            return IntersectionTypes.PointIntersection;
        }
开发者ID:zhongshuiyuan,项目名称:mapwindowsix,代码行数:93,代码来源:NonRobustLineIntersector.cs

示例13: ProjectionFactor

        /// <summary>Computes the Projection Factor for the projection of the point p
        /// onto this LineSegment.  The Projection Factor is the constant r
        /// by which the vector for this segment must be multiplied to
        /// equal the vector for the projection of <tt>p</tt> on the line
        /// defined by this segment.
        /// <para/>
        /// The projection factor will lie in the range <tt>(-inf, +inf)</tt>,
        /// or be <c>NaN</c> if the line segment has zero length.
        /// </summary>
        /// <param name="p">The point to compute the factor for</param>
        /// <returns>The projection factor for the point</returns>
        public double ProjectionFactor(Coordinate p)
        {
            if (p.Equals(_p0)) return 0.0;
            if (p.Equals(_p1)) return 1.0;

            // Otherwise, use comp.graphics.algorithms Frequently Asked Questions method
            /*     	          AC dot AB
                        r = ------------
                              ||AB||^2
                        r has the following meaning:
                        r=0 Point = A
                        r=1 Point = B
                        r<0 Point is on the backward extension of AB
                        r>1 Point is on the forward extension of AB
                        0<r<1 Point is interior to AB
            */
            var dx = _p1.X - _p0.X;
            var dy = _p1.Y - _p0.Y;
            var len = dx * dx + dy * dy;

            // handle zero-length segments
            if (len <= 0.0) return Double.NaN;

            double r = ((p.X - _p0.X) * dx + (p.Y - _p0.Y) * dy)
                      / len;
            return r;
        }
开发者ID:ste10k41,项目名称:nettopologysuite,代码行数:38,代码来源:LineSegment.cs

示例14: ProjectionFactor

        /// <summary>
        /// Compute the projection factor for the projection of the point p
        /// onto this <c>LineSegment</c>. The projection factor is the constant k
        /// by which the vector for this segment must be multiplied to
        /// equal the vector for the projection of p.
        /// </summary>
        /// <param name="p"></param>
        /// <returns></returns>
        public virtual double ProjectionFactor(Coordinate p)
        {
            if (p.Equals(P0)) return 0.0;
            if (p.Equals(P1)) return 1.0;

            // Otherwise, use comp.graphics.algorithms Frequently Asked Questions method
            /*     	          AC dot AB
                        r = ------------
                              ||AB||^2
                        r has the following meaning:
                        r=0 Point = A
                        r=1 Point = B
                        r<0 Point is on the backward extension of AB
                        r>1 Point is on the forward extension of AB
                        0<r<1 Point is interior to AB
            */
            double dx = P1.X - P0.X;
            double dy = P1.Y - P0.Y;
            double len2 = dx * dx + dy * dy;
            double r = ((p.X - P0.X) * dx + (p.Y - P0.Y) * dy) / len2;
            return r;
        }
开发者ID:ExRam,项目名称:DotSpatial-PCL,代码行数:30,代码来源:LineSegment.cs

示例15: IsInList

 public static bool IsInList(Coordinate pt, Coordinate[] pts)
 {
     foreach (Coordinate p in pts)
         if (pt.Equals(p))
             return true;
     return true;
 }
开发者ID:ste10k41,项目名称:nettopologysuite,代码行数:7,代码来源:EdgeRing.cs


注:本文中的System.Coordinate.Equals方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。