本文整理汇总了C#中SVM.Parameter类的典型用法代码示例。如果您正苦于以下问题:C# Parameter类的具体用法?C# Parameter怎么用?C# Parameter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
Parameter类属于SVM命名空间,在下文中一共展示了Parameter类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: PerformCrossValidation
/// <summary>
/// Performs cross validation.
/// </summary>
/// <param name="problem">The training data</param>
/// <param name="parameters">The parameters to test</param>
/// <param name="nrfold">The number of cross validations to use</param>
/// <returns>The cross validation score</returns>
public static double PerformCrossValidation(Problem problem, Parameter parameters, int nrfold)
{
string error = Procedures.svm_check_parameter(problem, parameters);
if (error == null)
return doCrossValidation(problem, parameters, nrfold);
else throw new Exception(error);
}
示例2: Main
public static void Main(string[] args)
{
Problem train = Problem.Read("a1a.train.txt");
Problem test = Problem.Read("a1a.test.txt");
//For this example (and indeed, many scenarios), the default
//parameters will suffice.
Parameter parameters = new Parameter();
double C;
double Gamma;
//This will do a grid optimization to find the best parameters
//and store them in C and Gamma, outputting the entire
//search to params.txt.
ParameterSelection.Grid(train, parameters, "params.txt", out C, out Gamma);
parameters.C = C;
parameters.Gamma = Gamma;
//Train the model using the optimal parameters.
Model model = Training.Train(train, parameters);
//Perform classification on the test data, putting the
//results in results.txt.
Prediction.Predict(test, "results.txt", model, false);
}
示例3: PrecomputedKernel
/// <summary>
/// Constructor.
/// </summary>
/// <param name="rows">Nodes to use as the rows of the matrix</param>
/// <param name="columns">Nodes to use as the columns of the matrix</param>
/// <param name="param">Parameters to use when compute similarities</param>
public PrecomputedKernel(List<Node[]> rows, List<Node[]> columns, Parameter param)
{
_rows = rows.Count;
_columns = columns.Count;
_similarities = new float[_rows, _columns];
for (int r = 0; r < _rows; r++)
for (int c = 0; c < _columns; c++)
_similarities[r, c] = (float)Kernel.KernelFunction(rows[r], columns[c], param);
}
示例4: Kernel
public Kernel(int l, Node[][] x_, Parameter param)
{
_kernelType = param.KernelType;
_degree = param.Degree;
_gamma = param.Gamma;
_coef0 = param.Coefficient0;
_x = (Node[][])x_.Clone();
if (_kernelType == KernelType.RBF) {
_xSquare = new double[l];
for (int i = 0; i < l; i++)
_xSquare[i] = dot(_x[i], _x[i]);
} else _xSquare = null;
}
示例5: train
public Model train(Problem issue)
{
var span = Overseer.observe("Training.Parameter-Choosing");
Parameter parameters = new Parameter();
parameters.KernelType = KernelType.RBF;
double C;
double Gamma;
ParameterSelection.Grid(issue, parameters, null, out C, out Gamma);
parameters.C = C;
parameters.Gamma = Gamma;
span.die();
span = Overseer.observe("Training.Training");
var result = Training.Train(issue, parameters);
span.die();
return result;
}
示例6: KernelFunction
public static double KernelFunction(Node[] x, Node[] y, Parameter param)
{
switch (param.KernelType) {
case KernelType.LINEAR:
return dot(x, y);
case KernelType.POLY:
return powi(param.Degree * dot(x, y) + param.Coefficient0, param.Degree);
case KernelType.RBF: {
double sum = computeSquaredDistance(x, y);
return Math.Exp(-param.Gamma * sum);
}
case KernelType.SIGMOID:
return Math.Tanh(param.Gamma * dot(x, y) + param.Coefficient0);
case KernelType.PRECOMPUTED:
return x[(int)(y[0].Value)].Value;
default:
return 0;
}
}
示例7: LearnAttributeToFactorMapping
///
public override void LearnAttributeToFactorMapping()
{
var svm_features = new List<Node[]>();
var relevant_items = new List<int>();
for (int i = 0; i < MaxItemID + 1; i++)
{
// ignore items w/o collaborative data
if (Feedback.ItemMatrix[i].Count == 0)
continue;
// ignore items w/o attribute data
if (item_attributes[i].Count == 0)
continue;
svm_features.Add( CreateNodes(i) );
relevant_items.Add(i);
}
// TODO proper random seed initialization
Node[][] svm_features_array = svm_features.ToArray();
var svm_parameters = new Parameter();
svm_parameters.SvmType = SvmType.EPSILON_SVR;
//svm_parameters.SvmType = SvmType.NU_SVR;
svm_parameters.C = this.c;
svm_parameters.Gamma = this.gamma;
models = new Model[num_factors];
for (int f = 0; f < num_factors; f++)
{
double[] targets = new double[svm_features.Count];
for (int i = 0; i < svm_features.Count; i++)
{
int item_id = relevant_items[i];
targets[i] = item_factors[item_id, f];
}
Problem svm_problem = new Problem(svm_features.Count, targets, svm_features_array, NumItemAttributes - 1);
models[f] = SVM.Training.Train(svm_problem, svm_parameters);
}
_MapToLatentFactorSpace = Utils.Memoize<int, double[]>(__MapToLatentFactorSpace);
}
示例8: TrainAndTest
private double TrainAndTest(string trainSet,string testSet, string resultFile)
{
Problem train = Problem.Read(trainSet);
Problem test = Problem.Read(testSet);
Parameter parameters = new Parameter();
if (chClassification.Checked)
{
parameters.SvmType = SvmType.C_SVC;
parameters.C = 0.03;
parameters.Gamma = 0.008;
}
else
{
parameters.SvmType = SvmType.EPSILON_SVR;
parameters.C = 8;
parameters.Gamma = 0.063;
parameters.P = 0.5;
}
Model model = Training.Train(train, parameters);
return Prediction.Predict(test, resultFile, model, true);
}
示例9: ONE_CLASS_Q
public ONE_CLASS_Q(Problem prob, Parameter param)
: base(prob.Count, prob.X, param)
{
cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
QD = new float[prob.Count];
for (int i = 0; i < prob.Count; i++)
QD[i] = (float)KernelFunction(i, i);
}
示例10: svm_cross_validation
// Stratified cross validation
public static void svm_cross_validation(Problem prob, Parameter param, int nr_fold, double[] target)
{
Random rand = new Random();
int i;
int[] fold_start = new int[nr_fold + 1];
int l = prob.Count;
int[] perm = new int[l];
// stratified cv may not give leave-one-out rate
// Each class to l folds -> some folds may have zero elements
if ((param.SvmType == SvmType.C_SVC ||
param.SvmType == SvmType.NU_SVC) && nr_fold < l)
{
int[] tmp_nr_class = new int[1];
int[][] tmp_label = new int[1][];
int[][] tmp_start = new int[1][];
int[][] tmp_count = new int[1][];
svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
int nr_class = tmp_nr_class[0];
//int[] label = tmp_label[0];
int[] start = tmp_start[0];
int[] count = tmp_count[0];
// random shuffle and then data grouped by fold using the array perm
int[] fold_count = new int[nr_fold];
int c;
int[] index = new int[l];
for (i = 0; i < l; i++)
index[i] = perm[i];
for (c = 0; c < nr_class; c++)
for (i = 0; i < count[c]; i++)
{
int j = i + (int)(rand.NextDouble() * (count[c] - i));
do { int _ = index[start[c] + j]; index[start[c] + j] = index[start[c] + i]; index[start[c] + i] = _; } while (false);
}
for (i = 0; i < nr_fold; i++)
{
fold_count[i] = 0;
for (c = 0; c < nr_class; c++)
fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
}
fold_start[0] = 0;
for (i = 1; i <= nr_fold; i++)
fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
for (c = 0; c < nr_class; c++)
for (i = 0; i < nr_fold; i++)
{
int begin = start[c] + i * count[c] / nr_fold;
int end = start[c] + (i + 1) * count[c] / nr_fold;
for (int j = begin; j < end; j++)
{
perm[fold_start[i]] = index[j];
fold_start[i]++;
}
}
fold_start[0] = 0;
for (i = 1; i <= nr_fold; i++)
fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
}
else
{
for (i = 0; i < l; i++) perm[i] = i;
for (i = 0; i < l; i++)
{
int j = i + (int)(rand.NextDouble() * (l - i));
do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
}
for (i = 0; i <= nr_fold; i++)
fold_start[i] = i * l / nr_fold;
}
for (i = 0; i < nr_fold; i++)
{
int begin = fold_start[i];
int end = fold_start[i + 1];
int j, k;
Problem subprob = new Problem();
subprob.Count = l - (end - begin);
subprob.X = new Node[subprob.Count][];
subprob.Y = new double[subprob.Count];
k = 0;
for (j = 0; j < begin; j++)
{
subprob.X[k] = prob.X[perm[j]];
subprob.Y[k] = prob.Y[perm[j]];
++k;
}
for (j = end; j < l; j++)
{
subprob.X[k] = prob.X[perm[j]];
subprob.Y[k] = prob.Y[perm[j]];
++k;
}
Model submodel = svm_train(subprob, param);
if (param.Probability &&
//.........这里部分代码省略.........
示例11: svm_train_one
static decision_function svm_train_one(Problem prob, Parameter param, double Cp, double Cn)
{
double[] alpha = new double[prob.Count];
Solver.SolutionInfo si = new Solver.SolutionInfo();
switch (param.SvmType)
{
case SvmType.C_SVC:
solve_c_svc(prob, param, alpha, si, Cp, Cn);
break;
case SvmType.NU_SVC:
solve_nu_svc(prob, param, alpha, si);
break;
case SvmType.ONE_CLASS:
solve_one_class(prob, param, alpha, si);
break;
case SvmType.EPSILON_SVR:
solve_epsilon_svr(prob, param, alpha, si);
break;
case SvmType.NU_SVR:
solve_nu_svr(prob, param, alpha, si);
break;
}
Procedures.info("obj = " + si.obj + ", rho = " + si.rho + "\n");
// output SVs
int nSV = 0;
int nBSV = 0;
for (int i = 0; i < prob.Count; i++)
{
if (Math.Abs(alpha[i]) > 0)
{
++nSV;
if (prob.Y[i] > 0)
{
if (Math.Abs(alpha[i]) >= si.upper_bound_p)
++nBSV;
}
else
{
if (Math.Abs(alpha[i]) >= si.upper_bound_n)
++nBSV;
}
}
}
Procedures.info("nSV = " + nSV + ", nBSV = " + nBSV + "\n");
decision_function f = new decision_function();
f.alpha = alpha;
f.rho = si.rho;
return f;
}
示例12: Grid
/// <summary>
/// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
/// combination which performed best. Uses the default values of C and Gamma.
/// </summary>
/// <param name="problem">The training data</param>
/// <param name="validation">The validation data</param>
/// <param name="parameters">The parameters to use when optimizing</param>
/// <param name="outputFile">The output file for the parameter results</param>
/// <param name="C">The optimal C value will be placed in this variable</param>
/// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
public static void Grid(
Problem problem,
Problem validation,
Parameter parameters,
string outputFile,
out double C,
out double Gamma)
{
Grid(problem, validation, parameters, GetList(MIN_C, MAX_C, C_STEP), GetList(MIN_G, MAX_G, G_STEP), outputFile, out C, out Gamma);
}
示例13: solve_nu_svc
private static void solve_nu_svc(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si)
{
int i;
int l = prob.Count;
double nu = param.Nu;
sbyte[] y = new sbyte[l];
for (i = 0; i < l; i++)
if (prob.Y[i] > 0)
y[i] = +1;
else
y[i] = -1;
double sum_pos = nu * l / 2;
double sum_neg = nu * l / 2;
for (i = 0; i < l; i++)
if (y[i] == +1)
{
alpha[i] = Math.Min(1.0, sum_pos);
sum_pos -= alpha[i];
}
else
{
alpha[i] = Math.Min(1.0, sum_neg);
sum_neg -= alpha[i];
}
double[] zeros = new double[l];
for (i = 0; i < l; i++)
zeros[i] = 0;
Solver_NU s = new Solver_NU();
s.Solve(l, new SVC_Q(prob, param, y), zeros, y, alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
double r = si.r;
Procedures.info("C = " + 1 / r + "\n");
for (i = 0; i < l; i++)
alpha[i] *= y[i] / r;
si.rho /= r;
si.obj /= (r * r);
si.upper_bound_p = 1 / r;
si.upper_bound_n = 1 / r;
}
示例14: solve_c_svc
private static void solve_c_svc(Problem prob, Parameter param,
double[] alpha, Solver.SolutionInfo si,
double Cp, double Cn)
{
int l = prob.Count;
double[] Minus_ones = new double[l];
sbyte[] y = new sbyte[l];
int i;
for (i = 0; i < l; i++)
{
alpha[i] = 0;
Minus_ones[i] = -1;
if (prob.Y[i] > 0) y[i] = +1; else y[i] = -1;
}
Solver s = new Solver();
s.Solve(l, new SVC_Q(prob, param, y), Minus_ones, y,
alpha, Cp, Cn, param.EPS, si, param.Shrinking);
double sum_alpha = 0;
for (i = 0; i < l; i++)
sum_alpha += alpha[i];
if (Cp == Cn)
Procedures.info("nu = " + sum_alpha / (Cp * prob.Count) + "\n");
for (i = 0; i < l; i++)
alpha[i] *= y[i];
}
示例15: svm_train
//
// Interface functions
//
public static Model svm_train(Problem prob, Parameter param)
{
Model model = new Model();
model.Parameter = param;
if (param.SvmType == SvmType.ONE_CLASS ||
param.SvmType == SvmType.EPSILON_SVR ||
param.SvmType == SvmType.NU_SVR)
{
// regression or one-class-svm
model.NumberOfClasses = 2;
model.ClassLabels = null;
model.NumberOfSVPerClass = null;
model.PairwiseProbabilityA = null; model.PairwiseProbabilityB = null;
model.SupportVectorCoefficients = new double[1][];
if (param.Probability &&
(param.SvmType == SvmType.EPSILON_SVR ||
param.SvmType == SvmType.NU_SVR))
{
model.PairwiseProbabilityA = new double[1];
model.PairwiseProbabilityA[0] = svm_svr_probability(prob, param);
}
decision_function f = svm_train_one(prob, param, 0, 0);
model.Rho = new double[1];
model.Rho[0] = f.rho;
int nSV = 0;
int i;
for (i = 0; i < prob.Count; i++)
if (Math.Abs(f.alpha[i]) > 0) ++nSV;
model.SupportVectorCount = nSV;
model.SupportVectors = new Node[nSV][];
model.SupportVectorCoefficients[0] = new double[nSV];
int j = 0;
for (i = 0; i < prob.Count; i++)
if (Math.Abs(f.alpha[i]) > 0)
{
model.SupportVectors[j] = prob.X[i];
model.SupportVectorCoefficients[0][j] = f.alpha[i];
++j;
}
}
else
{
// classification
int l = prob.Count;
int[] tmp_nr_class = new int[1];
int[][] tmp_label = new int[1][];
int[][] tmp_start = new int[1][];
int[][] tmp_count = new int[1][];
int[] perm = new int[l];
// group training data of the same class
svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
int nr_class = tmp_nr_class[0];
int[] label = tmp_label[0];
int[] start = tmp_start[0];
int[] count = tmp_count[0];
Node[][] x = new Node[l][];
int i;
for (i = 0; i < l; i++)
x[i] = prob.X[perm[i]];
// calculate weighted C
double[] weighted_C = new double[nr_class];
for (i = 0; i < nr_class; i++)
weighted_C[i] = param.C;
foreach (int weightedLabel in param.Weights.Keys)
{
int index = Array.IndexOf<int>(label, weightedLabel);
if (index < 0)
Console.Error.WriteLine("warning: class label " + weightedLabel + " specified in weight is not found");
else weighted_C[index] *= param.Weights[weightedLabel];
}
// train k*(k-1)/2 models
bool[] nonzero = new bool[l];
for (i = 0; i < l; i++)
nonzero[i] = false;
decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2];
double[] probA = null, probB = null;
if (param.Probability)
{
probA = new double[nr_class * (nr_class - 1) / 2];
probB = new double[nr_class * (nr_class - 1) / 2];
}
int p = 0;
for (i = 0; i < nr_class; i++)
for (int j = i + 1; j < nr_class; j++)
{
Problem sub_prob = new Problem();
//.........这里部分代码省略.........