本文整理汇总了C#中OpenCvSharp.CPlusPlus.Mat类的典型用法代码示例。如果您正苦于以下问题:C# Mat类的具体用法?C# Mat怎么用?C# Mat使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Mat类属于OpenCvSharp.CPlusPlus命名空间,在下文中一共展示了Mat类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ChamferMatching
/// <summary>
///
/// </summary>
/// <param name="img"></param>
/// <param name="templ"></param>
/// <param name="results"></param>
/// <param name="cost"></param>
/// <param name="templScale"></param>
/// <param name="maxMatches"></param>
/// <param name="minMatchDistance"></param>
/// <param name="padX"></param>
/// <param name="padY"></param>
/// <param name="scales"></param>
/// <param name="minScale"></param>
/// <param name="maxScale"></param>
/// <param name="orientationWeight"></param>
/// <param name="truncate"></param>
/// <returns></returns>
public static int ChamferMatching(
Mat img, Mat templ,
out Point[][] results, out float[] cost,
double templScale=1, int maxMatches = 20,
double minMatchDistance = 1.0, int padX = 3,
int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6,
double orientationWeight = 0.5, double truncate = 20)
{
if (img == null)
throw new ArgumentNullException("img");
if (templ == null)
throw new ArgumentNullException("templ");
img.ThrowIfDisposed();
templ.ThrowIfDisposed();
using (var resultsVec = new VectorOfVectorPoint())
using (var costVec = new VectorOfFloat())
{
int ret = NativeMethods.contrib_chamerMatching(
img.CvPtr, templ.CvPtr, resultsVec.CvPtr, costVec.CvPtr,
templScale, maxMatches, minMatchDistance,
padX, padY, scales, minScale, maxScale, orientationWeight, truncate);
GC.KeepAlive(img);
GC.KeepAlive(templ);
results = resultsVec.ToArray();
cost = costVec.ToArray();
return ret;
}
}
示例2: Main
private static void Main(string[] args)
{
Mat src = new Mat("data/tsukuba_left.png", LoadMode.GrayScale);
Mat dst20 = new Mat();
Mat dst40 = new Mat();
Mat dst44 = new Mat();
using (CLAHE clahe = Cv2.CreateCLAHE())
{
clahe.ClipLimit = 20;
clahe.Apply(src, dst20);
clahe.ClipLimit = 40;
clahe.Apply(src, dst40);
clahe.TilesGridSize = new Size(4, 4);
clahe.Apply(src, dst44);
}
Window.ShowImages(src, dst20, dst40, dst44);
/*var img1 = new IplImage("data/lenna.png", LoadMode.Color);
var img2 = new IplImage("data/match2.png", LoadMode.Color);
Surf(img1, img2);*/
//Mat[] mats = StitchingPreprocess(400, 400, 10);
//Stitching(mats);
//Track();
//Run();
}
示例3: KinectImage
//セットアップ
public KinectImage()
#region
{
//キネクト
this.kinect = KinectSensor.GetDefault();
//bodyIndexFrameの処理
this.bodyIndexFrameDes = this.kinect.BodyIndexFrameSource.FrameDescription;
this.bodyIndexFrameReader = this.kinect.BodyIndexFrameSource.OpenReader();
this.bodyIndexFrameReader.FrameArrived += this.BodyIndexFrame_Arrived;
//画像情報
this.kinectImgPackage = new ShadowPackage();
this.imageWidth = this.bodyIndexFrameDes.Width; // imgW;
this.imageHeight = this.bodyIndexFrameDes.Height; // imgH;
this.imageBytePerPixel = (int)this.bodyIndexFrameDes.BytesPerPixel;
this.bitmapRec = new Int32Rect(0, 0, this.imageWidth, this.imageHeight);
this.bitmapStride = (int)(this.imageWidth * this.imageBytePerPixel);
this.bodyIndexBuffer = new byte[this.imageWidth *
this.imageHeight * this.imageBytePerPixel];
this.kinectImage = new Mat(this.imageHeight, this.imageWidth, MatType.CV_8UC1);
//キネクト開始
this.kinect.Open();
}
示例4: ToMat
/// <summary>
/// System.Drawing.BitmapからOpenCVのMatへ変換して返す.
/// </summary>
/// <param name="src">変換するSystem.Drawing.Bitmap</param>
/// <returns>変換結果のMat</returns>
#else
/// <summary>
/// Converts System.Drawing.Bitmap to Mat
/// </summary>
/// <param name="src">System.Drawing.Bitmap object to be converted</param>
/// <returns>A Mat object which is converted from System.Drawing.Bitmap</returns>
#endif
public static Mat ToMat(this Bitmap src)
{
if (src == null)
throw new ArgumentNullException("src");
int w = src.Width;
int h = src.Height;
int channels;
switch (src.PixelFormat)
{
case PixelFormat.Format24bppRgb:
case PixelFormat.Format32bppRgb:
channels = 3; break;
case PixelFormat.Format32bppArgb:
case PixelFormat.Format32bppPArgb:
channels = 4; break;
case PixelFormat.Format8bppIndexed:
case PixelFormat.Format1bppIndexed:
channels = 1; break;
default:
throw new NotImplementedException();
}
Mat dst = new Mat(h, w, MatType.CV_8UC(channels));
ToMat(src, dst);
return dst;
}
示例5: StitchingPreprocess
private static Mat[] StitchingPreprocess(int width, int height, int count)
{
Mat source = new Mat(@"C:\Penguins.jpg", LoadMode.Color);
Mat result = source.Clone();
var rand = new Random();
var mats = new List<Mat>();
for (int i = 0; i < count; i++)
{
int x1 = rand.Next(source.Cols - width);
int y1 = rand.Next(source.Rows - height);
int x2 = x1 + width;
int y2 = y1 + height;
result.Line(new Point(x1, y1), new Point(x1, y2), new Scalar(0, 0, 255));
result.Line(new Point(x1, y2), new Point(x2, y2), new Scalar(0, 0, 255));
result.Line(new Point(x2, y2), new Point(x2, y1), new Scalar(0, 0, 255));
result.Line(new Point(x2, y1), new Point(x1, y1), new Scalar(0, 0, 255));
Mat m = source[new Rect(x1, y1, width, height)];
mats.Add(m.Clone());
//string outFile = String.Format(@"C:\temp\stitching\{0:D3}.png", i);
//m.SaveImage(outFile);
}
result.SaveImage(@"C:\temp\parts.png");
using (new Window(result))
{
Cv.WaitKey();
}
return mats.ToArray();
}
示例6: Canny
/// <summary>
/// Cannyアルゴリズムを用いて,画像のエッジを検出します.
/// </summary>
/// <param name="image">8ビット,シングルチャンネルの入力画像</param>
/// <param name="edges">出力されるエッジのマップ. image と同じサイズ,同じ型</param>
/// <param name="threshold1">ヒステリシスが存在する処理の,1番目の閾値</param>
/// <param name="threshold2">ヒステリシスが存在する処理の,2番目の閾値</param>
/// <param name="apertureSize">Sobelオペレータのアパーチャサイズ [既定値はApertureSize.Size3]</param>
/// <param name="L2gradient">画像勾配の強度を求めるために,より精度の高い L2ノルムを利用するか,L1ノルムで十分(false)かを指定します. [既定値はfalse]</param>
#else
/// <summary>
/// Finds edges in an image using Canny algorithm.
/// </summary>
/// <param name="image">Single-channel 8-bit input image</param>
/// <param name="edges">The output edge map. It will have the same size and the same type as image</param>
/// <param name="threshold1">The first threshold for the hysteresis procedure</param>
/// <param name="threshold2">The second threshold for the hysteresis procedure</param>
/// <param name="apertureSize">Aperture size for the Sobel operator [By default this is ApertureSize.Size3]</param>
/// <param name="L2gradient">Indicates, whether the more accurate L2 norm should be used to compute the image gradient magnitude (true), or a faster default L1 norm is enough (false). [By default this is false]</param>
#endif
public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, ApertureSize apertureSize = ApertureSize.Size3, bool L2gradient = false)
{
if (image == null)
throw new ArgumentNullException("image");
if (edges == null)
throw new ArgumentNullException("edges");
CppInvoke.cv_Canny(image.CvPtr, edges.CvPtr, threshold1, threshold2, apertureSize, L2gradient);
}
示例7: Filter
public Mat Filter(Mat src)
{
var dst = new Mat();
using (var k = GetMat())
{
Cv2.Filter2D(src, dst, MatType.CV_8U, k);
return dst;
}
}
示例8: Index
/// <summary>
/// 与えられたデータセットの最近傍探索インデックスを作成します.
/// </summary>
/// <param name="features">インデックス作成対象となる特徴(点)が格納された, CV_32F 型の行列.この行列のサイズは matrix is num _ features x feature _ dimensionality となります</param>
/// <param name="params">params – インデックスパラメータを含む構造体.作成されるインデックスの種類は,このパラメータの種類に依存します</param>
#else
/// <summary>
/// Constructs a nearest neighbor search index for a given dataset.
/// </summary>
/// <param name="features">features – Matrix of type CV _ 32F containing the features(points) to index. The size of the matrix is num _ features x feature _ dimensionality.</param>
/// <param name="params">Structure containing the index parameters. The type of index that will be constructed depends on the type of this parameter. </param>
#endif
public Index(Mat features, IndexParams @params)
{
if (features == null)
throw new ArgumentNullException("features");
if (@params == null)
throw new ArgumentNullException("params");
ptr = NativeMethods.flann_Index_construct(features.CvPtr, @params.CvPtr);
if (ptr == IntPtr.Zero)
throw new OpenCvSharpException("Failed to create Index");
}
示例9: FilterAsync
public Task<Mat> FilterAsync(Mat src)
{
return Task.Run(() =>
{
var dst = new Mat();
using (var k = GetMat())
{
Cv2.Filter2D(src, dst, MatType.CV_8U, k);
return dst;
}
});
}
示例10: Run
private static void Run()
{
var dm = DescriptorMatcher.Create("BruteForce");
dm.Clear();
Console.WriteLine(Cv2.GetCudaEnabledDeviceCount());
string[] algoNames = Algorithm.GetList();
Console.WriteLine(String.Join("\n", algoNames));
SIFT al1 = Algorithm.Create<SIFT>("Feature2D.SIFT");
string[] ppp = al1.GetParams();
Console.WriteLine(ppp);
var t = al1.ParamType("contrastThreshold");
double d = al1.GetDouble("contrastThreshold");
t.ToString();
d.ToString();
var src = new Mat("img/lenna.png");
var rand = new Random();
var memory = new List<long>(100);
var a1 = new Mat(src, Rect.FromLTRB(0, 0, 30, 40));
var a2 = new Mat(src, Rect.FromLTRB(0, 0, 30, 40));
var a3 = new Mat(src, Rect.FromLTRB(0, 0, 30, 40));
a3.ToString();
for (long i = 0;; i++)
{
SIFT a = Algorithm.Create<SIFT>("Feature2D.SIFT");
a.ToString();
for (int j = 0; j < 200; j++)
{
int c1 = rand.Next(100, 400);
int c2 = rand.Next(100, 400);
Mat temp = src.Row[c1];
src.Row[c1] = src.Row[c2];
src.Row[c2] = temp;
}
memory.Add(MyProcess.WorkingSet64);
if (memory.Count >= 100)
{
double average = memory.Average();
Console.WriteLine("{0:F3}MB", average / 1024.0 / 1024.0);
memory.Clear();
GC.Collect();
}
}
}
示例11: MatExpr
/// <summary>
///
/// </summary>
/// <param name="mat"></param>
internal MatExpr(Mat mat)
{
if(mat == null)
throw new ArgumentNullException("mat");
try
{
this.ptr = NativeMethods.core_MatExpr_new(mat.CvPtr);
}
catch (BadImageFormatException ex)
{
throw PInvokeHelper.CreateException(ex);
}
}
示例12: ConvertMaps
public static void ConvertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, MatrixType dstmap1type, bool nninterpolation = false)
{
if (map1 == null)
throw new ArgumentNullException("map1");
if (map2 == null)
throw new ArgumentNullException("map2");
if (dstmap1 == null)
throw new ArgumentNullException("dstmap1");
if (dstmap2 == null)
throw new ArgumentNullException("dstmap2");
CppInvoke.cv_convertMaps(map1.CvPtr, map2.CvPtr, dstmap1.CvPtr, dstmap2.CvPtr, dstmap1type, nninterpolation);
}
示例13: ToMat
/// <summary>
/// WriteableBitmapをMatに変換する
/// </summary>
/// <param name="src">変換するWriteableBitmap</param>
/// <returns>OpenCvSharpで扱えるMat</returns>
#else
/// <summary>
/// Converts WriteableBitmap to Mat
/// </summary>
/// <param name="src">Input WriteableBitmap</param>
/// <returns>IplImage</returns>
#endif
public static Mat ToMat(this WriteableBitmap src)
{
if (src == null)
{
throw new ArgumentNullException("src");
}
int w = src.PixelWidth;
int h = src.PixelHeight;
MatType type = GetOptimumType(src.Format);
Mat dst = new Mat(h, w, type);
ToMat(src, dst);
return dst;
}
示例14: Filter
public static ImageData Filter(string fileName, SpatialFilterKernel kernel)
{
try
{
var src = new Mat(fileName);
var bmp = kernel.FilterWriteableBitmap(src);
var images = new ImageData();
images.SourceImage = src.ToWriteableBitmap();
images.ResultImage = bmp;
return images;
}
finally
{
}
}
示例15: ImShow
/// <summary>
/// Displays the image in the specified window
/// </summary>
/// <param name="winname">Name of the window.</param>
/// <param name="mat">Image to be shown.</param>
public static void ImShow(string winname, Mat mat)
{
if (string.IsNullOrEmpty(winname))
throw new ArgumentNullException("winname");
if (mat == null)
throw new ArgumentNullException("mat");
try
{
NativeMethods.highgui_imshow(winname, mat.CvPtr);
}
catch (BadImageFormatException ex)
{
throw PInvokeHelper.CreateException(ex);
}
}