本文整理汇总了C#中OpenCvSharp.InputOutputArray类的典型用法代码示例。如果您正苦于以下问题:C# InputOutputArray类的具体用法?C# InputOutputArray怎么用?C# InputOutputArray使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
InputOutputArray类属于OpenCvSharp命名空间,在下文中一共展示了InputOutputArray类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: UpdateMotionHistory
/// <summary>
/// Updates motion history image using the current silhouette
/// </summary>
/// <param name="silhouette">Silhouette mask that has non-zero pixels where the motion occurs.</param>
/// <param name="mhi">Motion history image that is updated by the function (single-channel, 32-bit floating-point).</param>
/// <param name="timestamp">Current time in milliseconds or other units.</param>
/// <param name="duration">Maximal duration of the motion track in the same units as timestamp .</param>
public static void UpdateMotionHistory(
InputArray silhouette, InputOutputArray mhi,
double timestamp, double duration)
{
if (silhouette == null)
throw new ArgumentNullException("silhouette");
if (mhi == null)
throw new ArgumentNullException("mhi");
silhouette.ThrowIfDisposed();
mhi.ThrowIfNotReady();
NativeMethods.optflow_motempl_updateMotionHistory(
silhouette.CvPtr, mhi.CvPtr, timestamp, duration);
mhi.Fix();
}
示例2: FillConvexPoly
/// <summary>
/// 塗りつぶされた凸ポリゴンを描きます.
/// </summary>
/// <param name="img">画像</param>
/// <param name="pts">ポリゴンの頂点.</param>
/// <param name="color">ポリゴンの色.</param>
/// <param name="lineType">ポリゴンの枠線の種類,</param>
/// <param name="shift">ポリゴンの頂点座標において,小数点以下の桁を表すビット数.</param>
#else
/// <summary>
/// Fills a convex polygon.
/// </summary>
/// <param name="img">Image</param>
/// <param name="pts">The polygon vertices</param>
/// <param name="color">Polygon color</param>
/// <param name="lineType">Type of the polygon boundaries</param>
/// <param name="shift">The number of fractional bits in the vertex coordinates</param>
#endif
public static void FillConvexPoly(InputOutputArray img, InputArray pts, Scalar color,
LineTypes lineType = LineTypes.Link8, int shift = 0)
{
if (img == null)
throw new ArgumentNullException(nameof(img));
if (pts == null)
throw new ArgumentNullException(nameof(pts));
img.ThrowIfDisposed();
pts.ThrowIfDisposed();
NativeMethods.imgproc_fillConvexPoly_InputOutputArray(
img.CvPtr, pts.CvPtr, color, (int)lineType, shift);
GC.KeepAlive(img);
GC.KeepAlive(pts);
}
示例3: DrawSegments
/// <summary>
/// Draws the line segments on a given image.
/// </summary>
/// <param name="image">The image, where the liens will be drawn.
/// Should be bigger or equal to the image, where the lines were found.</param>
/// <param name="lines">A vector of the lines that needed to be drawn.</param>
public virtual void DrawSegments(InputOutputArray image, InputArray lines)
{
if (image == null)
throw new ArgumentNullException(nameof(image));
if (lines == null)
throw new ArgumentNullException(nameof(lines));
image.ThrowIfNotReady();
lines.ThrowIfDisposed();
NativeMethods.imgproc_LineSegmentDetector_drawSegments(ptr, image.CvPtr, lines.CvPtr);
image.Fix();
GC.KeepAlive(lines);
}
示例4: Normalize
/// <summary>
/// scales and shifts array elements so that either the specified norm (alpha)
/// or the minimum (alpha) and maximum (beta) array values get the specified values
/// </summary>
/// <param name="src">The source array</param>
/// <param name="dst">The destination array; will have the same size as src</param>
/// <param name="alpha">The norm value to normalize to or the lower range boundary
/// in the case of range normalization</param>
/// <param name="beta">The upper range boundary in the case of range normalization;
/// not used for norm normalization</param>
/// <param name="normType">The normalization type</param>
/// <param name="dtype">When the parameter is negative,
/// the destination array will have the same type as src,
/// otherwise it will have the same number of channels as src and the depth =CV_MAT_DEPTH(rtype)</param>
/// <param name="mask">The optional operation mask</param>
public static void Normalize( InputArray src, InputOutputArray dst, double alpha=1, double beta=0,
NormTypes normType=NormTypes.L2, int dtype=-1, InputArray mask=null)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
NativeMethods.core_normalize(src.CvPtr, dst.CvPtr, alpha, beta, (int)normType, dtype, ToPtr(mask));
GC.KeepAlive(src);
dst.Fix();
}
示例5: Randn
/// <summary>
/// fills array with normally-distributed random numbers with the specified mean and the standard deviation
/// </summary>
/// <param name="dst">The output array of random numbers.
/// The array must be pre-allocated and have 1 to 4 channels</param>
/// <param name="mean">The mean value (expectation) of the generated random numbers</param>
/// <param name="stddev">The standard deviation of the generated random numbers</param>
public static void Randn(InputOutputArray dst, Scalar mean, Scalar stddev)
{
if (dst == null)
throw new ArgumentNullException("dst");
dst.ThrowIfNotReady();
NativeMethods.core_randn_Scalar(dst.CvPtr, mean, stddev);
dst.Fix();
}
示例6: Randu
/// <summary>
/// fills array with uniformly-distributed random numbers from the range [low, high)
/// </summary>
/// <param name="dst">The output array of random numbers.
/// The array must be pre-allocated and have 1 to 4 channels</param>
/// <param name="low">The inclusive lower boundary of the generated random numbers</param>
/// <param name="high">The exclusive upper boundary of the generated random numbers</param>
public static void Randu(InputOutputArray dst, Scalar low, Scalar high)
{
if (dst == null)
throw new ArgumentNullException("dst");
dst.ThrowIfNotReady();
NativeMethods.core_randu_Scalar(dst.CvPtr, low, high);
GC.KeepAlive(low);
GC.KeepAlive(high);
dst.Fix();
}
示例7: Kmeans
/// <summary>
/// clusters the input data using k-Means algorithm
/// </summary>
/// <param name="data"></param>
/// <param name="k"></param>
/// <param name="bestLabels"></param>
/// <param name="criteria"></param>
/// <param name="attempts"></param>
/// <param name="flags"></param>
/// <param name="centers"></param>
/// <returns></returns>
public static double Kmeans(InputArray data, int k, InputOutputArray bestLabels,
TermCriteria criteria, int attempts, KMeansFlags flags, OutputArray centers = null)
{
if (data == null)
throw new ArgumentNullException("data");
if (bestLabels == null)
throw new ArgumentNullException("bestLabels");
data.ThrowIfDisposed();
bestLabels.ThrowIfDisposed();
double ret = NativeMethods.core_kmeans(data.CvPtr, k, bestLabels.CvPtr, criteria, attempts, (int)flags, ToPtr(centers));
bestLabels.Fix();
if(centers != null)
centers.Fix();
GC.KeepAlive(data);
return ret;
}
示例8: CalcCovarMatrix
/// <summary>
/// computes covariation matrix of a set of samples
/// </summary>
/// <param name="samples"></param>
/// <param name="covar"></param>
/// <param name="mean"></param>
/// <param name="flags"></param>
/// <param name="ctype"></param>
public static void CalcCovarMatrix(InputArray samples, OutputArray covar,
InputOutputArray mean, CovarFlags flags, MatType ctype)
{
if (samples == null)
throw new ArgumentNullException("samples");
if (covar == null)
throw new ArgumentNullException("covar");
if (mean == null)
throw new ArgumentNullException("mean");
samples.ThrowIfDisposed();
covar.ThrowIfNotReady();
mean.ThrowIfNotReady();
NativeMethods.core_calcCovarMatrix_InputArray(samples.CvPtr, covar.CvPtr, mean.CvPtr, (int)flags, ctype);
GC.KeepAlive(samples);
covar.Fix();
mean.Fix();
}
示例9: CalcOpticalFlowPyrLK
/// <summary>
/// computes sparse optical flow using multi-scale Lucas-Kanade algorithm
/// </summary>
/// <param name="prevImg"></param>
/// <param name="nextImg"></param>
/// <param name="prevPts"></param>
/// <param name="nextPts"></param>
/// <param name="status"></param>
/// <param name="err"></param>
/// <param name="winSize"></param>
/// <param name="maxLevel"></param>
/// <param name="criteria"></param>
/// <param name="flags"></param>
/// <param name="minEigThreshold"></param>
public static void CalcOpticalFlowPyrLK(
InputArray prevImg, InputArray nextImg,
InputArray prevPts, InputOutputArray nextPts,
OutputArray status, OutputArray err,
Size? winSize = null,
int maxLevel = 3,
TermCriteria? criteria = null,
OpticalFlowFlags flags = OpticalFlowFlags.None,
double minEigThreshold = 1e-4)
{
if (prevImg == null)
throw new ArgumentNullException("prevImg");
if (nextImg == null)
throw new ArgumentNullException("nextImg");
if (prevPts == null)
throw new ArgumentNullException("prevPts");
if (nextPts == null)
throw new ArgumentNullException("nextPts");
if (status == null)
throw new ArgumentNullException("status");
if (err == null)
throw new ArgumentNullException("err");
prevImg.ThrowIfDisposed();
nextImg.ThrowIfDisposed();
prevPts.ThrowIfDisposed();
nextPts.ThrowIfNotReady();
status.ThrowIfNotReady();
err.ThrowIfNotReady();
Size winSize0 = winSize.GetValueOrDefault(new Size(21, 21));
TermCriteria criteria0 = criteria.GetValueOrDefault(
TermCriteria.Both(30, 0.01));
NativeMethods.video_calcOpticalFlowPyrLK_InputArray(
prevImg.CvPtr, nextImg.CvPtr, prevPts.CvPtr, nextPts.CvPtr,
status.CvPtr, err.CvPtr, winSize0,maxLevel,
criteria0, (int)flags, minEigThreshold);
nextPts.Fix();
status.Fix();
err.Fix();
}
示例10: DrawContours
/// <summary>
/// 輪郭線,または内側が塗りつぶされた輪郭を描きます.
/// </summary>
/// <param name="image">出力画像</param>
/// <param name="contours"> 入力される全輪郭.各輪郭は,点のベクトルとして格納されています.</param>
/// <param name="contourIdx">描かれる輪郭を示します.これが負値の場合,すべての輪郭が描画されます.</param>
/// <param name="color">輪郭の色.</param>
/// <param name="thickness">輪郭線の太さ.これが負値の場合(例えば thickness=CV_FILLED ),輪郭の内側が塗りつぶされます.</param>
/// <param name="lineType">線の連結性</param>
/// <param name="hierarchy">階層に関するオプションの情報.これは,特定の輪郭だけを描画したい場合にのみ必要になります.</param>
/// <param name="maxLevel">描画される輪郭の最大レベル.0ならば,指定された輪郭のみが描画されます.
/// 1ならば,指定された輪郭と,それに入れ子になったすべての輪郭が描画されます.2ならば,指定された輪郭と,
/// それに入れ子になったすべての輪郭,さらにそれに入れ子になったすべての輪郭が描画されます.このパラメータは,
/// hierarchy が有効な場合のみ考慮されます.</param>
/// <param name="offset">輪郭をシフトするオプションパラメータ.指定された offset = (dx,dy) だけ,すべての描画輪郭がシフトされます.</param>
#else
/// <summary>
/// draws contours in the image
/// </summary>
/// <param name="image">Destination image.</param>
/// <param name="contours">All the input contours. Each contour is stored as a point vector.</param>
/// <param name="contourIdx">Parameter indicating a contour to draw. If it is negative, all the contours are drawn.</param>
/// <param name="color">Color of the contours.</param>
/// <param name="thickness">Thickness of lines the contours are drawn with. If it is negative (for example, thickness=CV_FILLED ),
/// the contour interiors are drawn.</param>
/// <param name="lineType">Line connectivity. </param>
/// <param name="hierarchy">Optional information about hierarchy. It is only needed if you want to draw only some of the contours</param>
/// <param name="maxLevel">Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
/// If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours,
/// all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account
/// when there is hierarchy available.</param>
/// <param name="offset">Optional contour shift parameter. Shift all the drawn contours by the specified offset = (dx, dy)</param>
#endif
public static void DrawContours(
InputOutputArray image,
IEnumerable<Mat> contours,
int contourIdx,
Scalar color,
int thickness = 1,
LineTypes lineType = LineTypes.Link8,
Mat hierarchy = null,
int maxLevel = Int32.MaxValue,
Point? offset = null)
{
if (image == null)
throw new ArgumentNullException(nameof(image));
if (contours == null)
throw new ArgumentNullException(nameof(contours));
image.ThrowIfNotReady();
Point offset0 = offset.GetValueOrDefault(new Point());
IntPtr[] contoursPtr = EnumerableEx.SelectPtrs(contours);
NativeMethods.imgproc_drawContours_InputArray(image.CvPtr, contoursPtr, contoursPtr.Length,
contourIdx, color, thickness, (int)lineType, ToPtr(hierarchy), maxLevel, offset0);
image.Fix();
}
示例11: PutText
/// <summary>
/// renders text string in the image
/// </summary>
/// <param name="img"></param>
/// <param name="text"></param>
/// <param name="org"></param>
/// <param name="fontFace"></param>
/// <param name="fontScale"></param>
/// <param name="color"></param>
/// <param name="thickness"></param>
/// <param name="lineType"></param>
/// <param name="bottomLeftOrigin"></param>
public static void PutText(InputOutputArray img, string text, Point org,
HersheyFonts fontFace, double fontScale, Scalar color,
int thickness = 1, LineTypes lineType = LineTypes.Link8, bool bottomLeftOrigin = false)
{
if (img == null)
throw new ArgumentNullException(nameof(img));
if (String.IsNullOrEmpty(text))
throw new ArgumentNullException(text);
img.ThrowIfDisposed();
NativeMethods.core_putText(img.CvPtr, text, org, (int)fontFace, fontScale, color,
thickness, (int)lineType, bottomLeftOrigin ? 1 : 0);
img.Fix();
}
示例12: Polylines
/// <summary>
/// draws one or more polygonal curves
/// </summary>
/// <param name="img"></param>
/// <param name="pts"></param>
/// <param name="isClosed"></param>
/// <param name="color"></param>
/// <param name="thickness"></param>
/// <param name="lineType"></param>
/// <param name="shift"></param>
public static void Polylines(
InputOutputArray img, InputArray pts, bool isClosed, Scalar color,
int thickness = 1, LineTypes lineType = LineTypes.Link8, int shift = 0)
{
if (img == null)
throw new ArgumentNullException(nameof(img));
if (pts == null)
throw new ArgumentNullException(nameof(pts));
img.ThrowIfDisposed();
pts.ThrowIfDisposed();
NativeMethods.imgproc_polylines_InputOutputArray(
img.CvPtr, pts.CvPtr, isClosed ? 1 : 0, color, thickness, (int)lineType, shift);
img.Fix();
GC.KeepAlive(pts);
}
示例13: FillPoly
/// <summary>
/// 1つ,または複数のポリゴンで区切られた領域を塗りつぶします.
/// </summary>
/// <param name="img">画像</param>
/// <param name="pts">ポリゴンの配列.各要素は,点の配列で表現されます.</param>
/// <param name="color">ポリゴンの色.</param>
/// <param name="lineType">ポリゴンの枠線の種類,</param>
/// <param name="shift">ポリゴンの頂点座標において,小数点以下の桁を表すビット数.</param>
/// <param name="offset"></param>
#else
/// <summary>
/// Fills the area bounded by one or more polygons
/// </summary>
/// <param name="img">Image</param>
/// <param name="pts">Array of polygons, each represented as an array of points</param>
/// <param name="color">Polygon color</param>
/// <param name="lineType">Type of the polygon boundaries</param>
/// <param name="shift">The number of fractional bits in the vertex coordinates</param>
/// <param name="offset"></param>
#endif
public static void FillPoly(
InputOutputArray img, InputArray pts, Scalar color,
LineTypes lineType = LineTypes.Link8, int shift = 0, Point? offset = null)
{
if (img == null)
throw new ArgumentNullException(nameof(img));
if (pts == null)
throw new ArgumentNullException(nameof(pts));
img.ThrowIfDisposed();
pts.ThrowIfDisposed();
Point offset0 = offset.GetValueOrDefault(new Point());
NativeMethods.imgproc_fillPoly_InputOutputArray(
img.CvPtr, pts.CvPtr, color, (int)lineType, shift, offset0);
GC.KeepAlive(pts);
img.Fix();
}
示例14: SetIdentity
/// <summary>
/// initializes scaled identity matrix
/// </summary>
/// <param name="mtx">The matrix to initialize (not necessarily square)</param>
/// <param name="s">The value to assign to the diagonal elements</param>
public static void SetIdentity(InputOutputArray mtx, Scalar? s = null)
{
if (mtx == null)
throw new ArgumentNullException("mtx");
mtx.ThrowIfNotReady();
Scalar s0 = s.GetValueOrDefault(new Scalar(1));
NativeMethods.core_setIdentity(mtx.CvPtr, s0);
mtx.Fix();
}
示例15: CalcOpticalFlowFarneback
/// <summary>
/// Computes a dense optical flow using the Gunnar Farneback's algorithm.
/// </summary>
/// <param name="prev">first 8-bit single-channel input image.</param>
/// <param name="next">second input image of the same size and the same type as prev.</param>
/// <param name="flow">computed flow image that has the same size as prev and type CV_32FC2.</param>
/// <param name="pyrScale">parameter, specifying the image scale (<1) to build pyramids for each image;
/// pyrScale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous one.</param>
/// <param name="levels">number of pyramid layers including the initial image;
/// levels=1 means that no extra layers are created and only the original images are used.</param>
/// <param name="winsize">averaging window size; larger values increase the algorithm robustness to
/// image noise and give more chances for fast motion detection, but yield more blurred motion field.</param>
/// <param name="iterations">number of iterations the algorithm does at each pyramid level.</param>
/// <param name="polyN">size of the pixel neighborhood used to find polynomial expansion in each pixel;
/// larger values mean that the image will be approximated with smoother surfaces,
/// yielding more robust algorithm and more blurred motion field, typically poly_n =5 or 7.</param>
/// <param name="polySigma">standard deviation of the Gaussian that is used to smooth derivatives used as
/// a basis for the polynomial expansion; for polyN=5, you can set polySigma=1.1,
/// for polyN=7, a good value would be polySigma=1.5.</param>
/// <param name="flags">operation flags that can be a combination of OPTFLOW_USE_INITIAL_FLOW and/or OPTFLOW_FARNEBACK_GAUSSIAN</param>
public static void CalcOpticalFlowFarneback(InputArray prev, InputArray next,
InputOutputArray flow, double pyrScale, int levels, int winsize,
int iterations, int polyN, double polySigma, OpticalFlowFlags flags)
{
if (prev == null)
throw new ArgumentNullException("prev");
if (next == null)
throw new ArgumentNullException("next");
if (flow == null)
throw new ArgumentNullException("flow");
prev.ThrowIfDisposed();
next.ThrowIfDisposed();
flow.ThrowIfNotReady();
NativeMethods.video_calcOpticalFlowFarneback(prev.CvPtr, next.CvPtr,
flow.CvPtr, pyrScale, levels, winsize, iterations, polyN, polySigma,
(int)flags);
flow.Fix();
}