当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.BitCount方法代码示例

本文整理汇总了C#中Mono.Math.BigInteger.BitCount方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.BitCount方法的具体用法?C# BigInteger.BitCount怎么用?C# BigInteger.BitCount使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Mono.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.BitCount方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: DefaultRandom

		public void DefaultRandom () 
		{
			// based on bugzilla entry #68452
			BigInteger bi = new BigInteger ();
			Assert.AreEqual (0, bi.BitCount (), "before randomize");
			bi.Randomize ();
			// Randomize returns a random number of BitCount length
			// so in this case it will ALWAYS return 0
			Assert.AreEqual (0, bi.BitCount (), "after randomize");
			Assert.AreEqual (new BigInteger (0), bi, "Zero");
		}
开发者ID:Jakosa,项目名称:MonoLibraries,代码行数:11,代码来源:BigIntegerTest.cs

示例2: GenerateKeyPair

        private void GenerateKeyPair()
        {
            // p and q values should have a length of half the strength in bits
            int pbitlength = ((KeySize + 1) >> 1);
            int qbitlength = (KeySize - pbitlength);
            const uint uint_e = 17;
            e = uint_e; // fixed

            // generate p, prime and (p-1) relatively prime to e
            for (; ; )
            {
                p = BigInteger.GeneratePseudoPrime(pbitlength);
                if (p % uint_e != 1)
                    break;
            }
            // generate a modulus of the required length
            for (; ; )
            {
                // generate q, prime and (q-1) relatively prime to e,
                // and not equal to p
                for (; ; )
                {
                    q = BigInteger.GeneratePseudoPrime(qbitlength);
                    if ((q % uint_e != 1) && (p != q))
                        break;
                }

                // calculate the modulus
                n = p * q;
                if (n.BitCount() == KeySize)
                    break;

                // if we get here our primes aren't big enough, make the largest
                // of the two p and try again
                if (p < q)
                    p = q;
            }

            BigInteger pSub1 = (p - 1);
            BigInteger qSub1 = (q - 1);
            BigInteger phi = pSub1 * qSub1;

            // calculate the private exponent
            d = e.ModInverse(phi);

            // calculate the CRT factors
            dp = d % pSub1;
            dq = d % qSub1;
            qInv = q.ModInverse(p);

            keypairGenerated = true;
            isCRTpossible = true;

            if (KeyGenerated != null)
                KeyGenerated(this, null);
        }
开发者ID:neo1106,项目名称:l2script,代码行数:56,代码来源:RSA.cs

示例3: OddModTwoPow

			private unsafe BigInteger OddModTwoPow (BigInteger exp)
			{

				uint [] wkspace = new uint [mod.length << 1 + 1];

				BigInteger resultNum = Montgomery.ToMont ((BigInteger)2, this.mod);
				resultNum = new BigInteger (resultNum, mod.length << 1 +1);

				uint mPrime = Montgomery.Inverse (mod.data [0]);

				//
				// TODO: eat small bits, the ones we can do with no modular reduction
				//
				uint pos = (uint)exp.BitCount () - 2;

				do {
					Kernel.SquarePositive (resultNum, ref wkspace);
					resultNum = Montgomery.Reduce (resultNum, mod, mPrime);

					if (exp.TestBit (pos)) {
						//
						// resultNum = (resultNum * 2) % mod
						//

						fixed (uint* u = resultNum.data) {
							//
							// Double
							//
							uint* uu = u;
							uint* uuE = u + resultNum.length;
							uint x, carry = 0;
							while (uu < uuE) {
								x = *uu;
								*uu = (x << 1) | carry;
								carry = x >> (32 - 1);
								uu++;
							}

							// subtraction inlined because we know it is square
							if (carry != 0 || resultNum >= mod) {
								fixed (uint* s = mod.data) {
									uu = u;
									uint c = 0;
									uint* ss = s;
									do {
										uint a = *ss++;
										if (((a += c) < c) | ((* (uu++) -= a) > ~a))
											c = 1;
										else
											c = 0;
									} while (uu < uuE);
								}
							}
						}
					}
				} while (pos-- > 0);

				resultNum = Montgomery.Reduce (resultNum, mod, mPrime);
				return resultNum;
			}
开发者ID:runefs,项目名称:Marvin,代码行数:60,代码来源:BigInteger.cs

示例4: EvenPow

			private unsafe BigInteger EvenPow (uint b, BigInteger exp)
			{
				exp.Normalize ();
				uint [] wkspace = new uint [mod.length << 1 + 1];
				BigInteger resultNum = new BigInteger ((BigInteger)b, mod.length << 1 + 1);

				uint pos = (uint)exp.BitCount () - 2;

				//
				// We know that the first itr will make the val b
				//

				do {
					//
					// r = r ^ 2 % m
					//
					Kernel.SquarePositive (resultNum, ref wkspace);
					if (!(resultNum.length < mod.length))
						BarrettReduction (resultNum);

					if (exp.TestBit (pos)) {

						//
						// r = r * b % m
						//

						// TODO: Is Unsafe really speeding things up?
						fixed (uint* u = resultNum.data) {

							uint i = 0;
							ulong mc = 0;

							do {
								mc += (ulong)u [i] * (ulong)b;
								u [i] = (uint)mc;
								mc >>= 32;
							} while (++i < resultNum.length);

							if (resultNum.length < mod.length) {
								if (mc != 0) {
									u [i] = (uint)mc;
									resultNum.length++;
									while (resultNum >= mod)
										Kernel.MinusEq (resultNum, mod);
								}
							} else if (mc != 0) {

								//
								// First, we estimate the quotient by dividing
								// the first part of each of the numbers. Then
								// we correct this, if necessary, with a subtraction.
								//

								uint cc = (uint)mc;

								// We would rather have this estimate overshoot,
								// so we add one to the divisor
								uint divEstimate = (uint) ((((ulong)cc << 32) | (ulong) u [i -1]) /
									(mod.data [mod.length-1] + 1));

								uint t;

								i = 0;
								mc = 0;
								do {
									mc += (ulong)mod.data [i] * (ulong)divEstimate;
									t = u [i];
									u [i] -= (uint)mc;
									mc >>= 32;
									if (u [i] > t) mc++;
									i++;
								} while (i < resultNum.length);
								cc -= (uint)mc;

								if (cc != 0) {

									uint sc = 0, j = 0;
									uint [] s = mod.data;
									do {
										uint a = s [j];
										if (((a += sc) < sc) | ((u [j] -= a) > ~a)) sc = 1;
										else sc = 0;
										j++;
									} while (j < resultNum.length);
									cc -= sc;
								}
								while (resultNum >= mod)
									Kernel.MinusEq (resultNum, mod);
							} else {
								while (resultNum >= mod)
									Kernel.MinusEq (resultNum, mod);
							}
						}
					}
				} while (pos-- > 0);

				return resultNum;
			}
开发者ID:runefs,项目名称:Marvin,代码行数:98,代码来源:BigInteger.cs

示例5: OddPow

			private BigInteger OddPow (BigInteger b, BigInteger exp)
			{
				BigInteger resultNum = new BigInteger (Montgomery.ToMont (1, mod), mod.length << 1);
				BigInteger tempNum = new BigInteger (Montgomery.ToMont (b, mod), mod.length << 1);  // ensures (tempNum * tempNum) < b^ (2k)
				uint mPrime = Montgomery.Inverse (mod.data [0]);
				uint totalBits = (uint)exp.BitCount ();

				uint [] wkspace = new uint [mod.length << 1];

				// perform squaring and multiply exponentiation
				for (uint pos = 0; pos < totalBits; pos++) {
					if (exp.TestBit (pos)) {

						Array.Clear (wkspace, 0, wkspace.Length);
						Kernel.Multiply (resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
						resultNum.length += tempNum.length;
						uint [] t = wkspace;
						wkspace = resultNum.data;
						resultNum.data = t;

						Montgomery.Reduce (resultNum, mod, mPrime);
					}

					// the value of tempNum is required in the last loop
					if (pos < totalBits - 1) {
						Kernel.SquarePositive (tempNum, ref wkspace);
						Montgomery.Reduce (tempNum, mod, mPrime);
					}
				}

				Montgomery.Reduce (resultNum, mod, mPrime);
				return resultNum;
			}
开发者ID:runefs,项目名称:Marvin,代码行数:33,代码来源:BigInteger.cs

示例6: Pow

			public BigInteger Pow (BigInteger a, BigInteger k)
			{
				BigInteger b = new BigInteger (1);
				if (k == 0)
					return b;

				BigInteger A = a;
				if (k.TestBit (0))
					b = a;

				for (int i = 1; i < k.BitCount (); i++) {
					A = Multiply (A, A);
					if (k.TestBit (i))
						b = Multiply (A, b);
				}
				return b;
			}
开发者ID:runefs,项目名称:Marvin,代码行数:17,代码来源:BigInteger.cs

示例7: Initialize

 // initializes the private variables (throws CryptographicException)
 private void Initialize(BigInteger p, BigInteger g, BigInteger x, int secretLen, bool checkInput)
 {
     if (!p.IsProbablePrime() || g <= 0 || g >= p || (x != null && (x <= 0 || x > p - 2)))
         throw new CryptographicException();
     // default is to generate a number as large as the prime this
     // is usually overkill, but it's the most secure thing we can
     // do if the user doesn't specify a desired secret length ...
     if (secretLen == 0)
         secretLen = p.BitCount();
     m_P = p;
     m_G = g;
     if (x == null) {
         BigInteger pm1 = m_P - 1;
         for(m_X = BigInteger.GenerateRandom(secretLen); m_X >= pm1 || m_X == 0; m_X = BigInteger.GenerateRandom(secretLen)) {}
     } else {
         m_X = x;
     }
 }
开发者ID:tt,项目名称:dotnetopenid,代码行数:19,代码来源:DiffieHellmanManaged.cs

示例8: Pow

			public BigInteger Pow (BigInteger a, BigInteger k)
			{
#if false
				BigInteger b = new BigInteger (1);
				if (k == 0)
					return b;

				BigInteger A = a;
				if (k.TestBit (0))
					b = a;

				for (int i = 1; i < k.BitCount (); i++) {
					A = Multiply (A, A);
					if (k.TestBit (i))
						b = Multiply (A, b);
				}
				return b;
#endif


                var result = System.Numerics.BigInteger.ModPow(
                    EncodeBigInteger(a),
                    EncodeBigInteger(k),
                    EncodeBigInteger(mod)
                );

                return DecodeBigInteger(result);
			}
开发者ID:cdrnet,项目名称:ngit,代码行数:28,代码来源:BigInteger.cs

示例9: DefaultBitCount

		public void DefaultBitCount () 
		{
			BigInteger bi = new BigInteger ();
			Assert.AreEqual (0, bi.BitCount (), "default BitCount");
			// note: not bit are set so BitCount is zero
		}
开发者ID:Jakosa,项目名称:MonoLibraries,代码行数:6,代码来源:BigIntegerTest.cs

示例10: OddPow

			private BigInteger OddPow(uint b, BigInteger exp)
			{
				exp.Normalize();
				uint[] wkspace = new uint[mod.length << 1 + 1];

				BigInteger resultNum = Montgomery.ToMont((BigInteger)b, this.mod);
				resultNum = new BigInteger(resultNum, mod.length << 1 + 1);

				uint mPrime = Montgomery.Inverse(mod.data[0]);

				int bc = exp.BitCount () - 2;
				uint pos = (bc > 1 ? (uint) bc : 1);

				//
				// We know that the first itr will make the val b
				//

				do
				{
					//
					// r = r ^ 2 % m
					//
					Kernel.SquarePositive(resultNum, ref wkspace);
					resultNum = Montgomery.Reduce(resultNum, mod, mPrime);

					if (exp.TestBit(pos))
					{

						//
						// r = r * b % m
						//

						uint u = 0;

						uint i = 0;
						ulong mc = 0;

						do
						{
							mc += (ulong)resultNum.data[u + i] * (ulong)b;
							resultNum.data[u + i] = (uint)mc;
							mc >>= 32;
						} while (++i < resultNum.length);

						if (resultNum.length < mod.length)
						{
							if (mc != 0)
							{
								resultNum.data[u + i] = (uint)mc;
								resultNum.length++;
								while (resultNum >= mod)
									Kernel.MinusEq(resultNum, mod);
							}
						}
						else if (mc != 0)
						{

							//
							// First, we estimate the quotient by dividing
							// the first part of each of the numbers. Then
							// we correct this, if necessary, with a subtraction.
							//

							uint cc = (uint)mc;

							// We would rather have this estimate overshoot,
							// so we add one to the divisor
							uint divEstimate;
							if (mod.data [mod.length - 1] < UInt32.MaxValue) {
								divEstimate = (uint) ((((ulong)cc << 32) | (ulong)resultNum.data[u + i - 1]) /
									(mod.data [mod.length-1] + 1));
							}
							else {
								// guess but don't divide by 0
								divEstimate = (uint) ((((ulong)cc << 32) | (ulong)resultNum.data[i - 1]) /
									(mod.data [mod.length-1]));
							}

							uint t;

							i = 0;
							mc = 0;
							do
							{
								mc += (ulong)mod.data[i] * (ulong)divEstimate;
								t = resultNum.data[u + i];
								resultNum.data[u + i] -= (uint)mc;
								mc >>= 32;
								if (resultNum.data[u + i] > t)
									mc++;
								i++;
							} while (i < resultNum.length);
							cc -= (uint)mc;

							if (cc != 0)
							{

								uint sc = 0, j = 0;
								uint[] s = mod.data;
								do
//.........这里部分代码省略.........
开发者ID:tt,项目名称:dotnetopenid,代码行数:101,代码来源:BigInteger.cs

示例11: Pow

            public BigInteger Pow(BigInteger a, BigInteger k)
            {
                var b = new BigInteger(1);
                if (k == 0)
                    return b;

                var A = a;
                if (k.TestBit(0))
                    b = a;

                var bitCount = k.BitCount();
                for (var i = 1; i < bitCount; i++)
                {
                    A = Multiply(A, A);
                    if (k.TestBit(i))
                        b = Multiply(A, b);
                }
                return b;
            }
开发者ID:claudiuslollarius,项目名称:monotorrent,代码行数:19,代码来源:BigInteger.cs


注:本文中的Mono.Math.BigInteger.BitCount方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。