本文整理汇总了C#中Microsoft.Z3.Context.MkNumeral方法的典型用法代码示例。如果您正苦于以下问题:C# Context.MkNumeral方法的具体用法?C# Context.MkNumeral怎么用?C# Context.MkNumeral使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Microsoft.Z3.Context
的用法示例。
在下文中一共展示了Context.MkNumeral方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: EeAndGt
public static Expr EeAndGt(String left1, int left2, String right1, int right2)
{
using (Context ctx = new Context())
{
Expr a = ctx.MkConst(left1, ctx.MkIntSort());
Expr b = ctx.MkNumeral(left2, ctx.MkIntSort());
Expr c = ctx.MkConst(right1, ctx.MkIntSort());
Expr d = ctx.MkNumeral(right2, ctx.MkIntSort());
Solver s = ctx.MkSolver();
s.Assert(ctx.MkAnd(ctx.MkEq((ArithExpr)a, (ArithExpr)b), ctx.MkGt((ArithExpr)c, (ArithExpr)d)));
s.Check();
BoolExpr testing = ctx.MkAnd(ctx.MkEq((ArithExpr)a, (ArithExpr)b), ctx.MkGt((ArithExpr)c, (ArithExpr)d));
Model model = Check(ctx, testing, Status.SATISFIABLE);
Expr result2;
Model m2 = s.Model;
foreach (FuncDecl d2 in m2.Decls)
{
result2 = m2.ConstInterp(d2);
return result2;
}
}
return null;
}
示例2: GetNumeral
/// <summary>
/// Returns the Z3 term corresponding to the MSF rational number.
/// </summary>
/// <param name="rational">The MSF rational</param>
/// <returns>The Z3 term</returns>
public static ArithExpr GetNumeral(Context context, Rational rational, Sort sort = null)
{
try
{
sort = rational.IsInteger() ? ((Sort)context.IntSort) : (sort == null ? (Sort)context.RealSort : sort);
return (ArithExpr)context.MkNumeral(rational.ToString(), sort);
}
catch (Z3Exception e)
{
Console.Error.WriteLine("Conversion of {0} failed:\n {1}", rational, e);
throw new NotSupportedException();
}
}
示例3: CheckLessThan
public static void CheckLessThan(int a, String b)
{
// Console.WriteLine("This test worked" + a + " " + b);
using (Context ctx = new Context())
{
// 3 < x
Expr x = ctx.MkConst(b, ctx.MkIntSort());
Expr value = ctx.MkNumeral(a, ctx.MkIntSort());
BoolExpr test = ctx.MkLt((ArithExpr)value,(ArithExpr) x);
Model model = Check(ctx, test, Status.SATISFIABLE);
}
}
示例4: Main
static void Main(string[] args)
{
using (Context ctx = new Context())
{
Expr x = ctx.MkConst("x", ctx.MkIntSort());
Expr zero = ctx.MkNumeral(0, ctx.MkIntSort());
Solver s = ctx.MkSolver();
s.Assert(ctx.MkLt((ArithExpr)zero, (ArithExpr)x)); // 0<x
Status result = s.Check();
Console.WriteLine(result);
}
}
示例5: BasicTests
/// <summary>
/// Some basic tests.
/// </summary>
static void BasicTests(Context ctx)
{
Console.WriteLine("BasicTests");
Symbol qi = ctx.MkSymbol(1);
Symbol fname = ctx.MkSymbol("f");
Symbol x = ctx.MkSymbol("x");
Symbol y = ctx.MkSymbol("y");
Sort bs = ctx.MkBoolSort();
Sort[] domain = { bs, bs };
FuncDecl f = ctx.MkFuncDecl(fname, domain, bs);
Expr fapp = ctx.MkApp(f, ctx.MkConst(x, bs), ctx.MkConst(y, bs));
Expr[] fargs2 = { ctx.MkFreshConst("cp", bs) };
Sort[] domain2 = { bs };
Expr fapp2 = ctx.MkApp(ctx.MkFreshFuncDecl("fp", domain2, bs), fargs2);
BoolExpr trivial_eq = ctx.MkEq(fapp, fapp);
BoolExpr nontrivial_eq = ctx.MkEq(fapp, fapp2);
Goal g = ctx.MkGoal(true);
g.Assert(trivial_eq);
g.Assert(nontrivial_eq);
Console.WriteLine("Goal: " + g);
Solver solver = ctx.MkSolver();
foreach (BoolExpr a in g.Formulas)
solver.Assert(a);
if (solver.Check() != Status.SATISFIABLE)
throw new TestFailedException();
ApplyResult ar = ApplyTactic(ctx, ctx.MkTactic("simplify"), g);
if (ar.NumSubgoals == 1 && (ar.Subgoals[0].IsDecidedSat || ar.Subgoals[0].IsDecidedUnsat))
throw new TestFailedException();
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedSat)
throw new TestFailedException();
g.Assert(ctx.MkEq(ctx.MkNumeral(1, ctx.MkBitVecSort(32)),
ctx.MkNumeral(2, ctx.MkBitVecSort(32))));
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedUnsat)
throw new TestFailedException();
Goal g2 = ctx.MkGoal(true, true);
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g2);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedSat)
throw new TestFailedException();
g2 = ctx.MkGoal(true, true);
g2.Assert(ctx.MkFalse());
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g2);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedUnsat)
throw new TestFailedException();
Goal g3 = ctx.MkGoal(true, true);
Expr xc = ctx.MkConst(ctx.MkSymbol("x"), ctx.IntSort);
Expr yc = ctx.MkConst(ctx.MkSymbol("y"), ctx.IntSort);
g3.Assert(ctx.MkEq(xc, ctx.MkNumeral(1, ctx.IntSort)));
g3.Assert(ctx.MkEq(yc, ctx.MkNumeral(2, ctx.IntSort)));
BoolExpr constr = ctx.MkEq(xc, yc);
g3.Assert(constr);
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g3);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedUnsat)
throw new TestFailedException();
ModelConverterTest(ctx);
// Real num/den test.
RatNum rn = ctx.MkReal(42, 43);
Expr inum = rn.Numerator;
Expr iden = rn.Denominator;
Console.WriteLine("Numerator: " + inum + " Denominator: " + iden);
if (inum.ToString() != "42" || iden.ToString() != "43")
throw new TestFailedException();
if (rn.ToDecimalString(3) != "0.976?")
throw new TestFailedException();
BigIntCheck(ctx, ctx.MkReal("-1231231232/234234333"));
BigIntCheck(ctx, ctx.MkReal("-123123234234234234231232/234234333"));
BigIntCheck(ctx, ctx.MkReal("-234234333"));
BigIntCheck(ctx, ctx.MkReal("234234333/2"));
string bn = "1234567890987654321";
if (ctx.MkInt(bn).BigInteger.ToString() != bn)
throw new TestFailedException();
if (ctx.MkBV(bn, 128).BigInteger.ToString() != bn)
//.........这里部分代码省略.........
示例6: FloatingPointExample2
public static void FloatingPointExample2(Context ctx)
{
Console.WriteLine("FloatingPointExample2");
FPSort double_sort = ctx.MkFPSort(11, 53);
FPRMSort rm_sort = ctx.MkFPRoundingModeSort();
FPRMExpr rm = (FPRMExpr)ctx.MkConst(ctx.MkSymbol("rm"), rm_sort);
BitVecExpr x = (BitVecExpr)ctx.MkConst(ctx.MkSymbol("x"), ctx.MkBitVecSort(64));
FPExpr y = (FPExpr)ctx.MkConst(ctx.MkSymbol("y"), double_sort);
FPExpr fp_val = ctx.MkFP(42, double_sort);
BoolExpr c1 = ctx.MkEq(y, fp_val);
BoolExpr c2 = ctx.MkEq(x, ctx.MkFPToBV(rm, y, 64, false));
BoolExpr c3 = ctx.MkEq(x, ctx.MkBV(42, 64));
BoolExpr c4 = ctx.MkEq(ctx.MkNumeral(42, ctx.RealSort), ctx.MkFPToReal(fp_val));
BoolExpr c5 = ctx.MkAnd(c1, c2, c3, c4);
Console.WriteLine("c5 = " + c5);
/* Generic solver */
Solver s = ctx.MkSolver();
s.Assert(c5);
Console.WriteLine(s);
if (s.Check() != Status.SATISFIABLE)
throw new TestFailedException();
Console.WriteLine("OK, model: {0}", s.Model.ToString());
}
示例7: FloatingPointExample1
public static void FloatingPointExample1(Context ctx)
{
Console.WriteLine("FloatingPointExample1");
FPSort s = ctx.MkFPSort(11, 53);
Console.WriteLine("Sort: {0}", s);
FPNum x = (FPNum)ctx.MkNumeral("-1e1", s); /* -1 * 10^1 = -10 */
FPNum y = (FPNum)ctx.MkNumeral("-10", s); /* -10 */
FPNum z = (FPNum)ctx.MkNumeral("-1.25p3", s); /* -1.25 * 2^3 = -1.25 * 8 = -10 */
Console.WriteLine("x={0}; y={1}; z={2}", x.ToString(), y.ToString(), z.ToString());
BoolExpr a = ctx.MkAnd(ctx.MkFPEq(x, y), ctx.MkFPEq(y, z));
Check(ctx, ctx.MkNot(a), Status.UNSATISFIABLE);
/* nothing is equal to NaN according to floating-point
* equality, so NaN == k should be unsatisfiable. */
FPExpr k = (FPExpr)ctx.MkConst("x", s);
FPExpr nan = ctx.MkFPNaN(s);
/* solver that runs the default tactic for QF_FP. */
Solver slvr = ctx.MkSolver("QF_FP");
slvr.Add(ctx.MkFPEq(nan, k));
if (slvr.Check() != Status.UNSATISFIABLE)
throw new TestFailedException();
Console.WriteLine("OK, unsat:" + Environment.NewLine + slvr);
/* NaN is equal to NaN according to normal equality. */
slvr = ctx.MkSolver("QF_FP");
slvr.Add(ctx.MkEq(nan, nan));
if (slvr.Check() != Status.SATISFIABLE)
throw new TestFailedException();
Console.WriteLine("OK, sat:" + Environment.NewLine + slvr);
/* Let's prove -1e1 * -1.25e3 == +100 */
x = (FPNum)ctx.MkNumeral("-1e1", s);
y = (FPNum)ctx.MkNumeral("-1.25p3", s);
FPExpr x_plus_y = (FPExpr)ctx.MkConst("x_plus_y", s);
FPNum r = (FPNum)ctx.MkNumeral("100", s);
slvr = ctx.MkSolver("QF_FP");
slvr.Add(ctx.MkEq(x_plus_y, ctx.MkFPMul(ctx.MkFPRoundNearestTiesToAway(), x, y)));
slvr.Add(ctx.MkNot(ctx.MkFPEq(x_plus_y, r)));
if (slvr.Check() != Status.UNSATISFIABLE)
throw new TestFailedException();
Console.WriteLine("OK, unsat:" + Environment.NewLine + slvr);
}
示例8: FiniteDomainExample
public static void FiniteDomainExample(Context ctx)
{
Console.WriteLine("FiniteDomainExample");
FiniteDomainSort s = ctx.MkFiniteDomainSort("S", 10);
FiniteDomainSort t = ctx.MkFiniteDomainSort("T", 10);
FiniteDomainNum s1 = (FiniteDomainNum)ctx.MkNumeral(1, s);
FiniteDomainNum t1 = (FiniteDomainNum)ctx.MkNumeral(1, t);
Console.WriteLine("{0} of size {1}", s, s.Size);
Console.WriteLine("{0} of size {1}", t, t.Size);
Console.WriteLine("{0}", s1);
Console.WriteLine("{0}", t1);
Console.WriteLine("{0}", s1.Int);
Console.WriteLine("{0}", t1.Int);
// But you cannot mix numerals of different sorts
// even if the size of their domains are the same:
// Console.WriteLine("{0}", ctx.MkEq(s1, t1));
}
示例9: BitvectorExample2
/// <summary>
/// Find x and y such that: x ^ y - 103 == x * y
/// </summary>
public static void BitvectorExample2(Context ctx)
{
Console.WriteLine("BitvectorExample2");
/* construct x ^ y - 103 == x * y */
Sort bv_type = ctx.MkBitVecSort(32);
BitVecExpr x = ctx.MkBVConst("x", 32);
BitVecExpr y = ctx.MkBVConst("y", 32);
BitVecExpr x_xor_y = ctx.MkBVXOR(x, y);
BitVecExpr c103 = (BitVecNum)ctx.MkNumeral("103", bv_type);
BitVecExpr lhs = ctx.MkBVSub(x_xor_y, c103);
BitVecExpr rhs = ctx.MkBVMul(x, y);
BoolExpr ctr = ctx.MkEq(lhs, rhs);
Console.WriteLine("find values of x and y, such that x ^ y - 103 == x * y");
/* find a model (i.e., values for x an y that satisfy the constraint */
Model m = Check(ctx, ctr, Status.SATISFIABLE);
Console.WriteLine(m);
}
示例10: BitvectorExample1
/// <summary>
/// Simple bit-vector example.
/// </summary>
/// <remarks>
/// This example disproves that x - 10 <= 0 IFF x <= 10 for (32-bit) machine integers
/// </remarks>
public static void BitvectorExample1(Context ctx)
{
Console.WriteLine("BitvectorExample1");
Sort bv_type = ctx.MkBitVecSort(32);
BitVecExpr x = (BitVecExpr)ctx.MkConst("x", bv_type);
BitVecNum zero = (BitVecNum)ctx.MkNumeral("0", bv_type);
BitVecNum ten = ctx.MkBV(10, 32);
BitVecExpr x_minus_ten = ctx.MkBVSub(x, ten);
/* bvsle is signed less than or equal to */
BoolExpr c1 = ctx.MkBVSLE(x, ten);
BoolExpr c2 = ctx.MkBVSLE(x_minus_ten, zero);
BoolExpr thm = ctx.MkIff(c1, c2);
Console.WriteLine("disprove: x - 10 <= 0 IFF x <= 10 for (32-bit) machine integers");
Disprove(ctx, thm);
}
示例11: PushPopExample1
/// <summary>
/// Show how push & pop can be used to create "backtracking" points.
/// </summary>
/// <remarks>This example also demonstrates how big numbers can be
/// created in ctx.</remarks>
public static void PushPopExample1(Context ctx)
{
Console.WriteLine("PushPopExample1");
/* create a big number */
IntSort int_type = ctx.IntSort;
IntExpr big_number = ctx.MkInt("1000000000000000000000000000000000000000000000000000000");
/* create number 3 */
IntExpr three = (IntExpr)ctx.MkNumeral("3", int_type);
/* create x */
IntExpr x = ctx.MkIntConst("x");
Solver solver = ctx.MkSolver();
/* assert x >= "big number" */
BoolExpr c1 = ctx.MkGe(x, big_number);
Console.WriteLine("assert: x >= 'big number'");
solver.Assert(c1);
/* create a backtracking point */
Console.WriteLine("push");
solver.Push();
/* assert x <= 3 */
BoolExpr c2 = ctx.MkLe(x, three);
Console.WriteLine("assert: x <= 3");
solver.Assert(c2);
/* context is inconsistent at this point */
if (solver.Check() != Status.UNSATISFIABLE)
throw new TestFailedException();
/* backtrack: the constraint x <= 3 will be removed, since it was
asserted after the last ctx.Push. */
Console.WriteLine("pop");
solver.Pop(1);
/* the context is consistent again. */
if (solver.Check() != Status.SATISFIABLE)
throw new TestFailedException();
/* new constraints can be asserted... */
/* create y */
IntExpr y = ctx.MkIntConst("y");
/* assert y > x */
BoolExpr c3 = ctx.MkGt(y, x);
Console.WriteLine("assert: y > x");
solver.Assert(c3);
/* the context is still consistent. */
if (solver.Check() != Status.SATISFIABLE)
throw new TestFailedException();
}
示例12: FiniteDomainExample
public static void FiniteDomainExample(Context ctx)
{
Console.WriteLine("FiniteDomainExample");
var s = ctx.MkFiniteDomainSort("S", 10);
var t = ctx.MkFiniteDomainSort("T", 10);
var s1 = ctx.MkNumeral(1, s);
var t1 = ctx.MkNumeral(1, t);
Console.WriteLine("{0}", s);
Console.WriteLine("{0}", t);
Console.WriteLine("{0}", s1);
Console.WriteLine("{0}", ctx.MkNumeral(2, s));
Console.WriteLine("{0}", t1);
// But you cannot mix numerals of different sorts
// even if the size of their domains are the same:
// Console.WriteLine("{0}", ctx.MkEq(s1, t1));
}
示例13: TestBitVectorOps
public void TestBitVectorOps()
{
Context z3 = new Context();
var bv16 = z3.MkBitVecSort(16);
var c = (BitVecExpr)z3.MkConst("c",bv16);
var _3 = (BitVecExpr)z3.MkNumeral(3, bv16);
var _7 = (BitVecExpr)z3.MkNumeral(7, bv16);
var _1 = (BitVecExpr)z3.MkNumeral(1, bv16);
var c_and_7 = z3.MkBVAND(c, _7);
//((1 + (c & 7)) & 3)
var t = z3.MkBVAND(z3.MkBVAdd(_1, c_and_7), _3);
var s = t.Simplify(); //comes out as: (1 + (c & 3))
var t_neq_s = z3.MkNot(z3.MkEq(t, s));
var solv =z3.MkSolver();
solv.Assert(t_neq_s);
Assert.AreEqual(Status.UNSATISFIABLE, solv.Check());
}