本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.SparseVector.DotProduct方法的典型用法代码示例。如果您正苦于以下问题:C# SparseVector.DotProduct方法的具体用法?C# SparseVector.DotProduct怎么用?C# SparseVector.DotProduct使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MathNet.Numerics.LinearAlgebra.Double.SparseVector
的用法示例。
在下文中一共展示了SparseVector.DotProduct方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: TestVelocityOnPlane
public void TestVelocityOnPlane()
{
Frisbee.SimulationState st = new Frisbee.SimulationState
{
VX = 1,
VY = 1,
Theta = Math.PI / 4
};
Matrix<double> transformation =
new SparseMatrix(new [,]
{
{st.CosTheta, st.SinTheta*st.SinPhi, -st.SinTheta*st.CosPhi},
{0, st.CosPhi, st.SinPhi},
{st.SinTheta, -st.CosTheta*st.SinPhi, st.CosTheta*st.CosPhi}
});
SparseVector c3 = new SparseVector(transformation.Row(2));
SparseVector velocity = new SparseVector(new[] { st.VX, st.VY, st.VZ });
double velocityMagnitude = velocity.Norm(2);
double velocityC3 = velocity.DotProduct(c3);
Vector<double> vp = velocity.Subtract(c3.Multiply(velocityC3));
double vpMagnitude = vp.Norm(2);
}
示例2: CosineR
private static double CosineR(SparseVector Vector_a, SparseVector Vector_b)
{
return Vector_a.DotProduct(Vector_b) / (Vector_a.L2Norm() * Vector_b.L2Norm());
//return Distance.Cosine(R.Row(a).ToArray(), R.Row(b).ToArray());
}
示例3: CanDotProductOfTwoSparseVectors
public void CanDotProductOfTwoSparseVectors()
{
var vectorA = new SparseVector(10000);
vectorA[200] = 1;
vectorA[500] = 3;
vectorA[800] = 5;
vectorA[100] = 7;
vectorA[900] = 9;
var vectorB = new SparseVector(10000);
vectorB[300] = 3;
vectorB[500] = 5;
vectorB[800] = 7;
Assert.AreEqual(50.0, vectorA.DotProduct(vectorB));
}
示例4: Window_Loaded
private void Window_Loaded(object sender, RoutedEventArgs e)
{
double theta = 45D*Math.PI/180D, phi = 0D*Math.PI/180D;
//double x = Math.Sin(angle);
//double y = -Math.Cos(angle) * Math.Sin(0D);
//double z = Math.Cos(angle) * Math.Cos(0D);
//SparseVector vectorSpeed = new SparseVector(new double[]{1D, 1D, 1D });
//SparseVector vectorC3 = new SparseVector(new double[]{x, y, z });
//double dotProduct = vectorSpeed.DotProduct(vectorC3);
//Vector<double> subtract = vectorSpeed.Subtract(vectorC3.Multiply(dotProduct));
//m_axeXZ.AddPoint(0.5, 0.5);
//m_axeXZ.AddPoint(subtract[0], subtract[1]);
Matrix<double> transformation =
//new SparseMatrix(new double[,]
// {
// {Math.Cos(theta), Math.Sin(theta)*Math.Sin(phi), -Math.Sin(theta)*Math.Cos(phi)},
// {0, Math.Cos(phi), Math.Cos(phi)},
// {Math.Sin(theta), -Math.Cos(theta)*Math.Cos(phi), Math.Cos(theta)*Math.Cos(phi)}
// });
new SparseMatrix(new double[,]
{
{0, 0, 0},
{0, 0, 0},
{Math.Sin(theta), -Math.Cos(theta)*Math.Cos(phi), Math.Cos(theta)*Math.Cos(phi)}
});
//SparseVector vectorSpeed = new SparseVector(new double[] { 1D, 0D, 0D });
//Vector<double> multiply = transformation.Multiply(vectorSpeed);
//DisplayVector(multiply);
SparseVector vectorC3 = new SparseVector(new double[] { 0D, 0D, 1D });
SparseVector vectorSpeed = new SparseVector(new double[] { Math.Cos(Math.PI / 4), 0D, Math.Sin(Math.PI / 4) });
double dotProduct = vectorSpeed.DotProduct(vectorC3);
}