当前位置: 首页>>代码示例>>C#>>正文


C# SparseMatrix.Multiply方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Complex32.SparseMatrix.Multiply方法的典型用法代码示例。如果您正苦于以下问题:C# SparseMatrix.Multiply方法的具体用法?C# SparseMatrix.Multiply怎么用?C# SparseMatrix.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Complex32.SparseMatrix的用法示例。


在下文中一共展示了SparseMatrix.Multiply方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: CheckResult

        /// <summary>
        /// Check the result.
        /// </summary>
        /// <param name="preconditioner">Specific preconditioner.</param>
        /// <param name="matrix">Source matrix.</param>
        /// <param name="vector">Initial vector.</param>
        /// <param name="result">Result vector.</param>
        protected override void CheckResult(IPreconditioner<Complex32> preconditioner, SparseMatrix matrix, Vector<Complex32> vector, Vector<Complex32> result)
        {
            Assert.AreEqual(typeof (DiagonalPreconditioner), preconditioner.GetType(), "#01");

            // Compute M * result = product
            // compare vector and product. Should be equal
            var product = new DenseVector(result.Count);
            matrix.Multiply(result, product);
            for (var i = 0; i < product.Count; i++)
            {
                Assert.IsTrue(vector[i].Real.AlmostEqualNumbersBetween(product[i].Real, -Epsilon.Magnitude()), "#02-" + i);
                Assert.IsTrue(vector[i].Imaginary.AlmostEqualNumbersBetween(product[i].Imaginary, -Epsilon.Magnitude()), "#03-" + i);
            }
        }
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:21,代码来源:DiagonalTest.cs

示例2: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(new IIterationStopCriterium<Complex32>[]
                {
                    new IterationCountStopCriterium<Complex32>(MaximumIterations),
                    new ResidualStopCriterium(ConvergenceBoundary),
                    new DivergenceStopCriterium(),
                    new FailureStopCriterium()
                });
            var solver = new TFQMR(monitor);

            // Solve equation Ax = y
            var x = solver.Solve(matrix, y);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.HasConverged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(1e-4f, 1), "#05-" + i);
            }
        }
开发者ID:primebing,项目名称:mathnet-numerics,代码行数:73,代码来源:TFQMRTest.cs

示例3: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = Vector<Complex32>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(
                new IterationCountStopCriterium<Complex32>(MaximumIterations),
                new ResidualStopCriterium<Complex32>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex32>(),
                new FailureStopCriterium<Complex32>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
开发者ID:rmundy,项目名称:mathnet-numerics,代码行数:69,代码来源:TFQMRTest.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Complex32.SparseMatrix.Multiply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。