当前位置: 首页>>代码示例>>C#>>正文


C# Solvers.Iterator类代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Complex.Solvers.Iterator的典型用法代码示例。如果您正苦于以下问题:C# Iterator类的具体用法?C# Iterator怎么用?C# Iterator使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


Iterator类属于MathNet.Numerics.LinearAlgebra.Complex.Solvers命名空间,在下文中一共展示了Iterator类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);

            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(1000),
                new ResidualStopCriterium(1e-10));

            var solver = new BiCgStab();
            var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);

            // The solution X row dimension is equal to the column dimension of A
            Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

            // The solution X has the same number of columns as B
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA*matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 1.0e-5);
                    Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 1.0e-5);
                }
            }
        }
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:30,代码来源:BiCgStabTest.cs

示例2: DetermineStatus

        public void DetermineStatus()
        {
            var criteria = new List<IIterationStopCriterium<Complex>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex>(1)
            };

            var iterator = new Iterator<Complex>(criteria);

            // First step, nothing should happen.
            iterator.DetermineStatus(
                0,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");

            // Second step, should run out of iterations.
            iterator.DetermineStatus(
                1,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.StoppedWithoutConvergence, iterator.Status, "Incorrect status");
        }
开发者ID:TransientResponse,项目名称:mathnet-numerics,代码行数:27,代码来源:IteratorTest.cs

示例3: CreateDefault

        /// <summary>
        /// Creates a default iterator with all the <see cref="IIterationStopCriterium"/> objects.
        /// </summary>
        /// <returns>A new <see cref="IIterator"/> object.</returns>
        public static IIterator CreateDefault()
        {
            var iterator = new Iterator();
            iterator.Add(new FailureStopCriterium());
            iterator.Add(new DivergenceStopCriterium());
            iterator.Add(new IterationCountStopCriterium());
            iterator.Add(new ResidualStopCriterium());

            return iterator;
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:14,代码来源:Iterator.cs

示例4: SolveUnitMatrixAndBackMultiply

        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.CreateIdentity(100);

            // Create the y vector
            var y = Vector<Complex>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(MaximumIterations),
                new ResidualStopCriterium<Complex>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex>(),
                new FailureStopCriterium<Complex>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
开发者ID:kityandhero,项目名称:mathnet-numerics,代码行数:33,代码来源:TFQMRTest.cs

示例5: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(100);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 10 x 10 grid
            const int GridSize = 10;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = Vector<Complex>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(MaximumIterations),
                new ResidualStopCriterium<Complex>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex>(),
                new FailureStopCriterium<Complex>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
开发者ID:kityandhero,项目名称:mathnet-numerics,代码行数:69,代码来源:TFQMRTest.cs

示例6: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            var matrixA = Matrix<Complex>.Build.Random(order, order, 1);
            var vectorb = Vector<Complex>.Build.Random(order, 1);

            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(1000),
                new ResidualStopCriterium<Complex>(1e-10));

            var solver = new TFQMR();

            var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
            Assert.AreEqual(matrixA.ColumnCount, resultx.Count);

            var matrixBReconstruct = matrixA*resultx;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
                Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
            }
        }
开发者ID:kityandhero,项目名称:mathnet-numerics,代码行数:23,代码来源:TFQMRTest.cs

示例7: SolveUnitMatrixAndBackMultiply

        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.Identity(100);

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => Complex.One);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(MaximumIterations),
                new ResidualStopCriterium(ConvergenceBoundary),
                new DivergenceStopCriterium(),
                new FailureStopCriterium());

            var solver = new BiCgStab();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
            }
        }
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:36,代码来源:BiCgStabTest.cs

示例8: SolveScaledUnitMatrixAndBackMultiply

        public void SolveScaledUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.CreateIdentity(100);

            // Scale it with a funny number
            matrix.Multiply(Math.PI, matrix);

            // Create the y vector
            var y = Vector<Complex>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterion<Complex>(MaximumIterations),
                new ResidualStopCriterion<Complex>(ConvergenceBoundary),
                new DivergenceStopCriterion<Complex>(),
                new FailureStopCriterion<Complex>());

            var solver = new MlkBiCgStab();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i);
            }
        }
开发者ID:skair39,项目名称:mathnet-numerics,代码行数:39,代码来源:MlkBiCgStabTest.cs

示例9: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(100);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 10 x 10 grid
            const int GridSize = 10;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(new IIterationStopCriterium<Complex>[]
                {
                    new IterationCountStopCriterium<Complex>(MaximumIterations),
                    new ResidualStopCriterium(ConvergenceBoundary),
                    new DivergenceStopCriterium(),
                    new FailureStopCriterium()
                });
            var solver = new MlkBiCgStab(monitor);

            // Solve equation Ax = y
            var x = solver.Solve(matrix, y);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.HasConverged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
            }
        }
开发者ID:primebing,项目名称:mathnet-numerics,代码行数:73,代码来源:MlkBiCgStabTest.cs

示例10: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

            var monitor = new Iterator<Complex>(new IIterationStopCriterium<Complex>[]
                {
                    new IterationCountStopCriterium<Complex>(1000),
                    new ResidualStopCriterium(1e-10),
                });
            var solver = new MlkBiCgStab(monitor);

            var resultx = solver.Solve(matrixA, vectorb);
            Assert.AreEqual(matrixA.ColumnCount, resultx.Count);

            var matrixBReconstruct = matrixA*resultx;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
                Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
            }
        }
开发者ID:primebing,项目名称:mathnet-numerics,代码行数:24,代码来源:MlkBiCgStabTest.cs

示例11: DetermineStatusWithNegativeIterationNumberThrowsArgumentOutOfRangeException

        public void DetermineStatusWithNegativeIterationNumberThrowsArgumentOutOfRangeException()
        {
            var criteria = new List<IIterationStopCriterium<Complex>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex>(),
                new ResidualStopCriterium()
            };
            var iterator = new Iterator<Complex>(criteria);

            Assert.Throws<ArgumentOutOfRangeException>(() => iterator.DetermineStatus(
                -1,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 5),
                DenseVector.Create(3, i => 6)));
        }
开发者ID:TransientResponse,项目名称:mathnet-numerics,代码行数:17,代码来源:IteratorTest.cs

示例12: ResetToPrecalculationState

        public void ResetToPrecalculationState()
        {
            var criteria = new List<IIterationStopCriterium<Complex>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex>(1)
            };

            var iterator = new Iterator<Complex>(criteria);

            // First step, nothing should happen.
            iterator.DetermineStatus(
                0,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");

            iterator.Reset();
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[0].Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[1].Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[2].Status, "Incorrect status");
        }
开发者ID:TransientResponse,项目名称:mathnet-numerics,代码行数:25,代码来源:IteratorTest.cs

示例13: DetermineStatusWithoutStopCriteriaDoesNotThrow

 public void DetermineStatusWithoutStopCriteriaDoesNotThrow()
 {
     var iterator = new Iterator<Complex>();
     Assert.DoesNotThrow(() => iterator.DetermineStatus(
         0,
         DenseVector.Create(3, i => 4),
         DenseVector.Create(3, i => 5),
         DenseVector.Create(3, i => 6)));
 }
开发者ID:TransientResponse,项目名称:mathnet-numerics,代码行数:9,代码来源:IteratorTest.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Complex.Solvers.Iterator类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。