当前位置: 首页>>代码示例>>C#>>正文


C# Normal.DensityLn方法代码示例

本文整理汇总了C#中MathNet.Numerics.Distributions.Normal.DensityLn方法的典型用法代码示例。如果您正苦于以下问题:C# Normal.DensityLn方法的具体用法?C# Normal.DensityLn怎么用?C# Normal.DensityLn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.Distributions.Normal的用法示例。


在下文中一共展示了Normal.DensityLn方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Run

        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/Normal_distribution">Normal distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the Normal distribution class with parameters Mean = 0, StdDev = 1
            var normal = new Normal(0, 1);
            Console.WriteLine(@"1. Initialize the new instance of the Normal distribution class with parameters Mean = {0}, StdDev = {1}", normal.Mean, normal.StdDev);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", normal);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", normal.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", normal.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", normal.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Entropy
            Console.WriteLine(@"{0} - Entropy", normal.Entropy.ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", normal.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", normal.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", normal.Mean.ToString(" #0.00000;-#0.00000"));

            // Median
            Console.WriteLine(@"{0} - Median", normal.Median.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", normal.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", normal.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", normal.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", normal.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 3. Generate 10 samples
            Console.WriteLine(@"3. Generate 10 samples");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(normal.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the Normal(0, 1) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the Normal(0, 1) distribution and display histogram");
            var data = new double[100000];
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = normal.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the Normal(-10, 0.2) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the Normal(-10, 0.01) distribution and display histogram");
            normal.Mean = -10;
            normal.StdDev = 0.01;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = normal.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:83,代码来源:NormalDistribution.cs


注:本文中的MathNet.Numerics.Distributions.Normal.DensityLn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。