本文整理汇总了C#中MathNet.Numerics.Distributions.Normal.DensityLn方法的典型用法代码示例。如果您正苦于以下问题:C# Normal.DensityLn方法的具体用法?C# Normal.DensityLn怎么用?C# Normal.DensityLn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MathNet.Numerics.Distributions.Normal
的用法示例。
在下文中一共展示了Normal.DensityLn方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Run
/// <summary>
/// Run example
/// </summary>
/// <a href="http://en.wikipedia.org/wiki/Normal_distribution">Normal distribution</a>
public void Run()
{
// 1. Initialize the new instance of the Normal distribution class with parameters Mean = 0, StdDev = 1
var normal = new Normal(0, 1);
Console.WriteLine(@"1. Initialize the new instance of the Normal distribution class with parameters Mean = {0}, StdDev = {1}", normal.Mean, normal.StdDev);
Console.WriteLine();
// 2. Distributuion properties:
Console.WriteLine(@"2. {0} distributuion properties:", normal);
// Cumulative distribution function
Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", normal.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));
// Probability density
Console.WriteLine(@"{0} - Probability density at location '0.3'", normal.Density(0.3).ToString(" #0.00000;-#0.00000"));
// Log probability density
Console.WriteLine(@"{0} - Log probability density at location '0.3'", normal.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));
// Entropy
Console.WriteLine(@"{0} - Entropy", normal.Entropy.ToString(" #0.00000;-#0.00000"));
// Largest element in the domain
Console.WriteLine(@"{0} - Largest element in the domain", normal.Maximum.ToString(" #0.00000;-#0.00000"));
// Smallest element in the domain
Console.WriteLine(@"{0} - Smallest element in the domain", normal.Minimum.ToString(" #0.00000;-#0.00000"));
// Mean
Console.WriteLine(@"{0} - Mean", normal.Mean.ToString(" #0.00000;-#0.00000"));
// Median
Console.WriteLine(@"{0} - Median", normal.Median.ToString(" #0.00000;-#0.00000"));
// Mode
Console.WriteLine(@"{0} - Mode", normal.Mode.ToString(" #0.00000;-#0.00000"));
// Variance
Console.WriteLine(@"{0} - Variance", normal.Variance.ToString(" #0.00000;-#0.00000"));
// Standard deviation
Console.WriteLine(@"{0} - Standard deviation", normal.StdDev.ToString(" #0.00000;-#0.00000"));
// Skewness
Console.WriteLine(@"{0} - Skewness", normal.Skewness.ToString(" #0.00000;-#0.00000"));
Console.WriteLine();
// 3. Generate 10 samples
Console.WriteLine(@"3. Generate 10 samples");
for (var i = 0; i < 10; i++)
{
Console.Write(normal.Sample().ToString("N05") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 4. Generate 100000 samples of the Normal(0, 1) distribution and display histogram
Console.WriteLine(@"4. Generate 100000 samples of the Normal(0, 1) distribution and display histogram");
var data = new double[100000];
for (var i = 0; i < data.Length; i++)
{
data[i] = normal.Sample();
}
ConsoleHelper.DisplayHistogram(data);
Console.WriteLine();
// 5. Generate 100000 samples of the Normal(-10, 0.2) distribution and display histogram
Console.WriteLine(@"5. Generate 100000 samples of the Normal(-10, 0.01) distribution and display histogram");
normal.Mean = -10;
normal.StdDev = 0.01;
for (var i = 0; i < data.Length; i++)
{
data[i] = normal.Sample();
}
ConsoleHelper.DisplayHistogram(data);
}