本文整理汇总了C#中MathNet.Numerics.Distributions.ContinuousUniform.Sample方法的典型用法代码示例。如果您正苦于以下问题:C# ContinuousUniform.Sample方法的具体用法?C# ContinuousUniform.Sample怎么用?C# ContinuousUniform.Sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MathNet.Numerics.Distributions.ContinuousUniform
的用法示例。
在下文中一共展示了ContinuousUniform.Sample方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Build
/// <summary>
/// Build linear samples.
/// </summary>
/// <param name="x">X sample values.</param>
/// <param name="y">Y samples values.</param>
/// <param name="xtest">X test values.</param>
/// <param name="ytest">Y test values.</param>
/// <param name="samples">Sample values.</param>
/// <param name="sampleOffset">Sample offset.</param>
/// <param name="slope">Slope number.</param>
/// <param name="intercept">Intercept criteria.</param>
public static void Build(out double[] x, out double[] y, out double[] xtest, out double[] ytest, int samples = 3, double sampleOffset = -0.5, double slope = 2.0, double intercept = -1.0)
{
// Fixed-seed "random" distribution to ensure we always test with the same data
var uniform = new ContinuousUniform(0.0, 1.0, new SystemRandomSource(42));
// build linear samples
x = new double[samples];
y = new double[samples];
for (int i = 0; i < x.Length; i++)
{
x[i] = i + sampleOffset;
y[i] = (x[i]*slope) + intercept;
}
// build linear test vectors randomly between the sample points
xtest = new double[samples + 1];
ytest = new double[samples + 1];
if (samples == 1)
{
// y = const
xtest[0] = sampleOffset - uniform.Sample();
xtest[1] = sampleOffset + uniform.Sample();
ytest[0] = ytest[1] = (sampleOffset*slope) + intercept;
}
else
{
for (int i = 0; i < xtest.Length; i++)
{
xtest[i] = (i - 1) + sampleOffset + uniform.Sample();
ytest[i] = (xtest[i]*slope) + intercept;
}
}
}
示例2: ZergCharacter
static ZergCharacter()
{
GOAL_PRIORITIES = new Dictionary<State, byte>(){
{State.AttackGoal, 16},
{State.FeedGoal, 8},
{State.RetreatGoal, 1},
{State.ServeGoal, 2}
};
var goals = new Stack<State>();
var goalEnums = (State[])Enum.GetValues(typeof(State));
foreach (var enumValue in goalEnums)
{
for (int i = 0; i < GOAL_PRIORITIES[enumValue]; i++)
{
goals.Push(enumValue);
}
}
int count = goals.Count;
RND = new DiscreteUniform(0, count - 1);
GOALS_LOOKUP_TABLE = new State[count];
var rnd = new ContinuousUniform(0.0, 1.0);
while (goals.Any())
{
int idx = (int)Math.Round(rnd.Sample() * (--count), 0);
GOALS_LOOKUP_TABLE[idx] = goals.Pop();
}
}
示例3: CanSample
public void CanSample()
{
var n = new ContinuousUniform();
n.Sample();
}
示例4: Run
/// <summary>
/// Run example
/// </summary>
/// <a href="http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29">ContinuousUniform distribution</a>
public void Run()
{
// 1. Initialize the new instance of the ContinuousUniform distribution class with default parameters.
var continuousUniform = new ContinuousUniform();
Console.WriteLine(@"1. Initialize the new instance of the ContinuousUniform distribution class with parameters Lower = {0}, Upper = {1}", continuousUniform.Lower, continuousUniform.Upper);
Console.WriteLine();
// 2. Distributuion properties:
Console.WriteLine(@"2. {0} distributuion properties:", continuousUniform);
// Cumulative distribution function
Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", continuousUniform.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));
// Probability density
Console.WriteLine(@"{0} - Probability density at location '0.3'", continuousUniform.Density(0.3).ToString(" #0.00000;-#0.00000"));
// Log probability density
Console.WriteLine(@"{0} - Log probability density at location '0.3'", continuousUniform.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));
// Entropy
Console.WriteLine(@"{0} - Entropy", continuousUniform.Entropy.ToString(" #0.00000;-#0.00000"));
// Largest element in the domain
Console.WriteLine(@"{0} - Largest element in the domain", continuousUniform.Maximum.ToString(" #0.00000;-#0.00000"));
// Smallest element in the domain
Console.WriteLine(@"{0} - Smallest element in the domain", continuousUniform.Minimum.ToString(" #0.00000;-#0.00000"));
// Mean
Console.WriteLine(@"{0} - Mean", continuousUniform.Mean.ToString(" #0.00000;-#0.00000"));
// Median
Console.WriteLine(@"{0} - Median", continuousUniform.Median.ToString(" #0.00000;-#0.00000"));
// Mode
Console.WriteLine(@"{0} - Mode", continuousUniform.Mode.ToString(" #0.00000;-#0.00000"));
// Variance
Console.WriteLine(@"{0} - Variance", continuousUniform.Variance.ToString(" #0.00000;-#0.00000"));
// Standard deviation
Console.WriteLine(@"{0} - Standard deviation", continuousUniform.StdDev.ToString(" #0.00000;-#0.00000"));
// Skewness
Console.WriteLine(@"{0} - Skewness", continuousUniform.Skewness.ToString(" #0.00000;-#0.00000"));
Console.WriteLine();
// 3. Generate 10 samples of the ContinuousUniform distribution
Console.WriteLine(@"3. Generate 10 samples of the ContinuousUniform distribution");
for (var i = 0; i < 10; i++)
{
Console.Write(continuousUniform.Sample().ToString("N05") + @" ");
}
Console.WriteLine();
Console.WriteLine();
// 4. Generate 100000 samples of the ContinuousUniform(0, 1) distribution and display histogram
Console.WriteLine(@"4. Generate 100000 samples of the ContinuousUniform(0, 1) distribution and display histogram");
var data = new double[100000];
for (var i = 0; i < data.Length; i++)
{
data[i] = continuousUniform.Sample();
}
ConsoleHelper.DisplayHistogram(data);
Console.WriteLine();
// 5. Generate 100000 samples of the ContinuousUniform(2, 10) distribution and display histogram
Console.WriteLine(@"5. Generate 100000 samples of the ContinuousUniform(2, 10) distribution and display histogram");
continuousUniform.Upper = 10;
continuousUniform.Lower = 2;
for (var i = 0; i < data.Length; i++)
{
data[i] = continuousUniform.Sample();
}
ConsoleHelper.DisplayHistogram(data);
}
示例5: Cudnn_UseCase_ForwardConvolution_Float
public void Cudnn_UseCase_ForwardConvolution_Float()
{
CudnnContext.DefaultType = CudnnType.Float;
CudnnContext.DefaultTensorFormat = CudnnTensorFormat.MajorRow;
using (var context = CudnnContext.Create())
{
// Set some options and tensor dimensions
int nInput = 100;
int filtersIn = 10;
int filtersOut = 8;
int heightIn = 20;
int widthIn = 20;
int heightFilter = 5;
int widthFilter = 5;
int paddingHeight = 4;
int paddingWeight = 4;
int verticalStride = 1;
int horizontalStride = 1;
int upscalex = 1;
int upscaley = 1;
var distribution = new ContinuousUniform(0, 1);
// Input Tensor Data
Vector<float> xDataVector = Vector<float>.Build.Dense(nInput * filtersIn * heightIn * widthIn);
xDataVector.MapInplace(x => (float)distribution.Sample(), Zeros.Include);
// Filter Tensor Data
Vector<float> filterData = Vector<float>.Build.Dense(filtersOut * filtersIn * heightFilter * widthFilter);
filterData.MapInplace(x => (float)distribution.Sample(), Zeros.Include);
// Descriptor for input
var xTensor = CudnnContext.CreateTensor(new CudnnTensorDescriptorParameters(nInput, filtersIn, heightFilter, widthFilter));
// Filter descriptor
var filter = CudnnContext.CreateFilter(new CudnnFilterDescriptorParameters(filtersOut, filtersIn, heightFilter, widthFilter));
// Convolution descriptor
var convolution = CudnnContext.CreateConvolution(new CudnnConvolutionDescriptorParameters(CudnnConvolutionMode.CrossCorrelation, xTensor, filter, paddingHeight, paddingWeight, verticalStride, horizontalStride, upscalex, upscaley));
var output = convolution.GetOutputTensor(CudnnConvolutionPath.Forward);
// Output tensor
var yTensor = CudnnContext.CreateTensor(new CudnnTensorDescriptorParameters(nInput, filtersOut, output.Height, output.Width));
float[] yData = new float[nInput * filtersOut * output.Height * output.Width];
// Perform convolution
context.Forward(xTensor, xDataVector.ToArray(), filter, filterData.ToArray(), convolution, yTensor, yData, CudnnAccumulateResult.DoNotAccumulate);
// Clean up
xTensor.Dispose();
yTensor.Dispose();
filter.Dispose();
convolution.Dispose();
}
}