本文整理汇总了C#中ManagedCuda.NPP.NPPImage_16sC4类的典型用法代码示例。如果您正苦于以下问题:C# NPPImage_16sC4类的具体用法?C# NPPImage_16sC4怎么用?C# NPPImage_16sC4使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
NPPImage_16sC4类属于ManagedCuda.NPP命名空间,在下文中一共展示了NPPImage_16sC4类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: RemapA
/// <summary>
/// image remap. Not affecting Alpha.
/// </summary>
/// <param name="dst">Destination-Image</param>
/// <param name="pXMap">Device memory pointer to 2D image array of X coordinate values to be used when sampling source image. </param>
/// <param name="pYMap">Device memory pointer to 2D image array of Y coordinate values to be used when sampling source image. </param>
/// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param>
public void RemapA(NPPImage_16sC4 dst, NPPImage_32fC1 pXMap, NPPImage_32fC1 pYMap, InterpolationMode eInterpolation)
{
NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi);
status = NPPNativeMethods.NPPi.Remap.nppiRemap_16s_AC4R(_devPtr, _sizeRoi, _pitch, srcRect, pXMap.DevicePointerRoi, pXMap.Pitch, pYMap.DevicePointerRoi, pYMap.Pitch, dst.DevicePointerRoi, dst.Pitch, dst.SizeRoi, eInterpolation);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiRemap_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例2: ConvertA
/// <summary>
/// 8-bit unsigned to 16-bit signed conversion. Not affecting Alpha channel.
/// </summary>
/// <param name="dst">Destination image</param>
public void ConvertA(NPPImage_16sC4 dst)
{
status = NPPNativeMethods.NPPi.BitDepthConversion.nppiConvert_8u16s_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiConvert_8u16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例3: ScaleA
/// <summary>
/// image conversion. Not affecting Alpha.
/// </summary>
/// <param name="dst">Destination-Image</param>
public void ScaleA(NPPImage_16sC4 dst)
{
NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi);
status = NPPNativeMethods.NPPi.Scale.nppiScale_8u16s_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiScale_8u16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例4: DivA
/// <summary>
/// In place image division, scale by 2^(-nScaleFactor), then clamp to saturated value. Unchanged Alpha.
/// </summary>
/// <param name="src2">2nd source image</param>
/// <param name="rndMode">Result Rounding mode to be used</param>
/// <param name="nScaleFactor">scaling factor</param>
public void DivA(NPPImage_16sC4 src2, NppRoundMode rndMode, int nScaleFactor)
{
status = NPPNativeMethods.NPPi.DivRound.nppiDiv_Round_16s_AC4IRSfs(src2.DevicePointerRoi, src2.Pitch, _devPtrRoi, _pitch, _sizeRoi, rndMode, nScaleFactor);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiDiv_Round_16s_AC4IRSfs", status));
NPPException.CheckNppStatus(status, this);
}
示例5: Copy
/// <summary>
/// Image copy.
/// </summary>
/// <param name="dst">Destination image</param>
/// <param name="channel">Channel number. This number is added to the dst pointer</param>
public void Copy(NPPImage_16sC4 dst, int channel)
{
if (channel < 0 | channel >= dst.Channels) throw new ArgumentOutOfRangeException("channel", "channel must be in range [0..3].");
status = NPPNativeMethods.NPPi.MemCopy.nppiCopy_16s_C1C4R(_devPtrRoi, _pitch, dst.DevicePointerRoi + channel * _typeSize, dst.Pitch, _sizeRoi);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCopy_16s_C1C4R", status));
NPPException.CheckNppStatus(status, this);
}
示例6: FilterUnsharpBorderA
/// <summary>
/// Filters the image using a unsharp-mask sharpening filter kernel with border control.<para/>
/// The algorithm involves the following steps:<para/>
/// Smooth the original image with a Gaussian filter, with the width controlled by the nRadius.<para/>
/// Subtract the smoothed image from the original to create a high-pass filtered image.<para/>
/// Apply any clipping needed on the high-pass image, as controlled by the nThreshold.<para/>
/// Add a certain percentage of the high-pass filtered image to the original image,
/// with the percentage controlled by the nWeight.
/// In pseudocode this algorithm can be written as:<para/>
/// HighPass = Image - Gaussian(Image)<para/>
/// Result = Image + nWeight * HighPass * ( |HighPass| >= nThreshold ) <para/>
/// where nWeight is the amount, nThreshold is the threshold, and >= indicates a Boolean operation, 1 if true, or 0 otherwise.
/// <para/>
/// If any portion of the mask overlaps the source image boundary, the requested border type
/// operation is applied to all mask pixels which fall outside of the source image.
/// </summary>
/// <param name="dst">Destination-Image</param>
/// <param name="nRadius">The radius of the Gaussian filter, in pixles, not counting the center pixel.</param>
/// <param name="nSigma">The standard deviation of the Gaussian filter, in pixel.</param>
/// <param name="nWeight">The percentage of the difference between the original and the high pass image that is added back into the original.</param>
/// <param name="nThreshold">The threshold needed to apply the difference amount.</param>
/// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param>
/// <param name="buffer">Pointer to the user-allocated device scratch buffer required for the unsharp operation.</param>
public void FilterUnsharpBorderA(NPPImage_16sC4 dst, float nRadius, float nSigma, float nWeight, float nThreshold, NppiBorderType eBorderType, CudaDeviceVariable<byte> buffer)
{
if (buffer.Size < FilterUnsharpGetBufferSizeA(nRadius, nSigma))
throw new NPPException("Provided buffer is too small.");
status = NPPNativeMethods.NPPi.FixedFilters.nppiFilterUnsharpBorder_16s_AC4R(_devPtr, _pitch, _pointRoi, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, nRadius, nSigma, nWeight, nThreshold, eBorderType, buffer.DevicePointer);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterUnsharpBorder_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例7: FilterGaussBorderA
/// <summary>
/// Filters the image using a separable Gaussian filter kernel with user supplied floating point coefficients
/// </summary>
/// <param name="dst">Destination-Image</param>
/// <param name="Kernel">Pointer to an array of nFilterTaps kernel coefficients which sum to 1.0F, where nFilterTaps = 2 * ((int)((float)ceil(radius) + 0.5F) ) + 1.</param>
/// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param>
public void FilterGaussBorderA(NPPImage_16sC4 dst, CudaDeviceVariable<float> Kernel, NppiBorderType eBorderType)
{
status = NPPNativeMethods.NPPi.FilterGaussBorder.nppiFilterGaussAdvancedBorder_16s_AC4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, Kernel.Size, Kernel.DevicePointer, eBorderType);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterGaussAdvancedBorder_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例8: CopySubpixA
/// <summary>
/// linearly interpolated source image subpixel coordinate color copy. Not affecting Alpha.
/// </summary>
/// <param name="dst">Destination-Image</param>
/// <param name="nDx">Fractional part of source image X coordinate.</param>
/// <param name="nDy">Fractional part of source image Y coordinate.</param>
public void CopySubpixA(NPPImage_16sC4 dst, float nDx, float nDy)
{
status = NPPNativeMethods.NPPi.CopySubpix.nppiCopySubpix_16s_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, nDx, nDy);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCopySubpix_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例9: NormRel_L1A
/// <summary>
/// image NormRel_L1. Not affecting Alpha.
/// </summary>
/// <param name="tpl">template image.</param>
/// <param name="pNormRel">Pointer to the computed relative error for the infinity norm of two images. (3 * sizeof(double))</param>
/// <param name="buffer">Allocated device memory with size of at <see cref="NormRelL1AGetBufferHostSize()"/></param>
public void NormRel_L1A(NPPImage_16sC4 tpl, CudaDeviceVariable<double> pNormRel, CudaDeviceVariable<byte> buffer)
{
int bufferSize = NormRelL1AGetBufferHostSize();
if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small.");
status = NPPNativeMethods.NPPi.NormRel.nppiNormRel_L1_16s_AC4R(_devPtrRoi, _pitch, tpl.DevicePointerRoi, tpl.Pitch, _sizeRoi, pNormRel.DevicePointer, buffer.DevicePointer);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiNormRel_L1_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例10: MirrorA
/// <summary>
/// Mirror image. Not affecting Alpha.
/// </summary>
/// <param name="dest">Destination image</param>
/// <param name="flip">Specifies the axis about which the image is to be mirrored.</param>
public void MirrorA(NPPImage_16sC4 dest, NppiAxis flip)
{
status = NPPNativeMethods.NPPi.GeometricTransforms.nppiMirror_16s_AC4R(_devPtrRoi, _pitch, dest.DevicePointerRoi, dest.Pitch, dest.SizeRoi, flip);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMirror_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例11: CopyWrapBorderA
/// <summary>
/// image copy with the borders wrapped by replication of source image pixel colors. Not affecting Alpha.
/// </summary>
/// <param name="dst">Destination-Image</param>
/// <param name="nTopBorderHeight">Height (in pixels) of the top border. The height of the border at the bottom of
/// the destination ROI is implicitly defined by the size of the source ROI: nBottomBorderHeight =
/// oDstSizeROI.height - nTopBorderHeight - oSrcSizeROI.height.</param>
/// <param name="nLeftBorderWidth">Width (in pixels) of the left border. The width of the border at the right side of
/// the destination ROI is implicitly defined by the size of the source ROI: nRightBorderWidth =
/// oDstSizeROI.width - nLeftBorderWidth - oSrcSizeROI.width.</param>
public void CopyWrapBorderA(NPPImage_16sC4 dst, int nTopBorderHeight, int nLeftBorderWidth)
{
status = NPPNativeMethods.NPPi.CopyWrapBorder.nppiCopyWrapBorder_16s_AC4R(_devPtrRoi, _pitch, _sizeRoi, dst.DevicePointerRoi, dst.Pitch, dst.SizeRoi, nTopBorderHeight, nLeftBorderWidth);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCopyWrapBorder_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例12: MaxEveryA
/// <summary>
/// image MaxEvery Not affecting Alpha.
/// </summary>
/// <param name="src2">Source-Image</param>
public void MaxEveryA(NPPImage_16sC4 src2)
{
status = NPPNativeMethods.NPPi.MinMaxEvery.nppiMaxEvery_16s_AC4IR(src2.DevicePointerRoi, src2.Pitch, _devPtrRoi, _pitch, _sizeRoi);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMaxEvery_16s_AC4IR", status));
NPPException.CheckNppStatus(status, this);
}
示例13: LutA
/// <summary>
/// look-up-table color conversion.<para/>
/// The LUT is derived from a set of user defined mapping points through linear interpolation. Not affecting alpha channel.
/// </summary>
/// <param name="dest">Destination image</param>
/// <param name="values0">array of user defined OUTPUT values, channel 0</param>
/// <param name="levels0">array of user defined INPUT values, channel 0</param>
/// <param name="values1">array of user defined OUTPUT values, channel 1</param>
/// <param name="levels1">array of user defined INPUT values, channel 1</param>
/// <param name="values2">array of user defined OUTPUT values, channel 2</param>
/// <param name="levels2">array of user defined INPUT values, channel 2</param>
public void LutA(NPPImage_16sC4 dest, CudaDeviceVariable<int> values0, CudaDeviceVariable<int> levels0, CudaDeviceVariable<int> values1,
CudaDeviceVariable<int> levels1, CudaDeviceVariable<int> values2, CudaDeviceVariable<int> levels2)
{
if (values0.Size != levels0.Size) throw new ArgumentException("values0 and levels0 must have same size.");
if (values1.Size != levels1.Size) throw new ArgumentException("values1 and levels1 must have same size.");
if (values2.Size != levels2.Size) throw new ArgumentException("values2 and levels2 must have same size.");
CUdeviceptr[] values = new CUdeviceptr[3];
CUdeviceptr[] levels = new CUdeviceptr[3];
int[] levelLengths = new int[3];
values[0] = values0.DevicePointer;
values[1] = values1.DevicePointer;
values[2] = values2.DevicePointer;
levels[0] = levels0.DevicePointer;
levels[1] = levels1.DevicePointer;
levels[2] = levels2.DevicePointer;
levelLengths[0] = levels0.Size;
levelLengths[1] = levels1.Size;
levelLengths[2] = levels2.Size;
status = NPPNativeMethods.NPPi.ColorLUTLinear.nppiLUT_Linear_16s_AC4R(_devPtrRoi, _pitch, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, values, levels, levelLengths);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiLUT_Linear_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例14: LUTCubicA
/// <summary>
/// cubic interpolated look-up-table color conversion.
/// The LUT is derived from a set of user defined mapping points through cubic interpolation. Not affecting Alpha.
/// </summary>
/// <param name="dst">Destination-Image</param>
/// <param name="pValues">Host pointer to an array of 3 device memory pointers, one per color CHANNEL, pointing to user defined OUTPUT values.</param>
/// <param name="pLevels">Host pointer to an array of 3 device memory pointers, one per color CHANNEL, pointing to user defined INPUT values. pLevels.Size gives nLevels.</param>
public void LUTCubicA(NPPImage_16sC4 dst, CudaDeviceVariable<int>[] pValues, CudaDeviceVariable<int>[] pLevels)
{
CUdeviceptr[] ptrsV = new CUdeviceptr[] { pValues[0].DevicePointer, pValues[1].DevicePointer, pValues[2].DevicePointer };
CUdeviceptr[] ptrsL = new CUdeviceptr[] { pLevels[0].DevicePointer, pLevels[1].DevicePointer, pLevels[2].DevicePointer };
int[] size = new int[] { pLevels[0].Size, pLevels[1].Size, pLevels[2].Size };
status = NPPNativeMethods.NPPi.ColorLUTCubic.nppiLUT_Cubic_16s_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, ptrsV, ptrsL, size);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiLUT_Cubic_16s_AC4R", status));
NPPException.CheckNppStatus(status, this);
}
示例15: FilterMaxBorder
/// <summary>
/// Result pixel value is the maximum of pixel values under the rectangular mask region.
/// </summary>
/// <param name="dest">Destination image</param>
/// <param name="oMaskSize">Width and Height of the neighborhood region for the local Avg operation.</param>
/// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference w.r.t the source pixel.</param>
/// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param>
public void FilterMaxBorder(NPPImage_16sC4 dest, NppiSize oMaskSize, NppiPoint oAnchor, NppiBorderType eBorderType)
{
status = NPPNativeMethods.NPPi.RankFilters.nppiFilterMaxBorder_16s_C4R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, oMaskSize, oAnchor, eBorderType);
Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterMaxBorder_16s_C4R", status));
NPPException.CheckNppStatus(status, this);
}