当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.Difference方法代码示例

本文整理汇总了C#中Granados.Mono.Math.BigInteger.Difference方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Difference方法的具体用法?C# BigInteger.Difference怎么用?C# BigInteger.Difference使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Granados.Mono.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.Difference方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: PointAdd

        /// <summary>
        /// Point addition over the curve
        /// </summary>
        private bool PointAdd(
                BigInteger.ModulusRing ring,
                ECPoint p1,
                ECPoint p2,
                out ECPoint p3) {

            if (p1 is ECPointAtInfinity) {
                p3 = p2;
                return true;
            }
            if (p2 is ECPointAtInfinity) {
                p3 = p1;
                return true;
            }

            if (p1.X == p2.X) {
                if (p1.Y == p2.Y) {
                    return PointDouble(ring, p1, out p3);
                }
                else {
                    p3 = new ECPointAtInfinity();
                    return true;
                }
            }

            // x3 = {(y2 - y1)/(x2 - x1)}^2 - (x1 + x2)
            // y3 = {(y2 - y1)/(x2 - x1)} * (x1 - x3) - y1

            try {
                BigInteger x1 = p1.X;
                BigInteger y1 = p1.Y;
                BigInteger x2 = p2.X;
                BigInteger y2 = p2.Y;

                BigInteger lambda = ring.Multiply(ring.Difference(y2, y1), ring.Difference(x2, x1).ModInverse(p));
                BigInteger x3 = ring.Difference(ring.Multiply(lambda, lambda), x1 + x2);
                BigInteger y3 = ring.Difference(ring.Multiply(lambda, ring.Difference(x1, x3)), y1);
                p3 = new ECPoint(x3, y3);
                return true;
            }
            catch (Exception) {
                p3 = null;
                return false;
            }
        }
开发者ID:poderosaproject,项目名称:poderosa,代码行数:48,代码来源:EC.cs

示例2: PointDouble

        /// <summary>
        /// Point dooubling over the curve
        /// </summary>
        private bool PointDouble(
                BigInteger.ModulusRing ring,
                ECPoint p1,
                out ECPoint p3) {

            if (p1 is ECPointAtInfinity) {
                p3 = p1;
                return true;
            }

            if (p1.Y == 0) {
                p3 = new ECPointAtInfinity();
                return true;
            }

            // x3 = {(3 * x1^2 + a)/(2 * y1)}^2 - (2 * x1)
            // y3 = {(3 * x1^2 + a)/(2 * y1)} * (x1 - x3) - y1

            try {
                BigInteger x1 = p1.X;
                BigInteger y1 = p1.Y;

                BigInteger x1_2 = ring.Multiply(x1, x1);
                BigInteger lambda = ring.Multiply(x1_2 + x1_2 + x1_2 + a, (y1 + y1).ModInverse(p));
                BigInteger x3 = ring.Difference(ring.Multiply(lambda, lambda), x1 + x1);
                BigInteger y3 = ring.Difference(ring.Multiply(lambda, ring.Difference(x1, x3)), y1);
                p3 = new ECPoint(x3, y3);
                return true;
            }
            catch (Exception) {
                p3 = null;
                return false;
            }
        }
开发者ID:poderosaproject,项目名称:poderosa,代码行数:37,代码来源:EC.cs

示例3: PointMul


//.........这里部分代码省略.........

                precompIndex = new Stack<sbyte>(bitCount + 1);

                if (bitIndex < bitCount) {
                    bitBuffer = (uint)(d[byteOffset] & WMASK);
                    bitIndex += W;
                }
                else {
                    noMoreBits = true;
                }

                while (!noMoreBits || bitBuffer != 0) {
                    if ((bitBuffer & 1) != 0) { // bits % 2 == 1
                        uint m = bitBuffer & WMASK; // m = bits % TPW;
                        if ((m & TPWD) != 0) {  // test m >= 2^(W-1)
                            // m is odd; thus
                            // (2^(W-1) + 1) <= m <= (2^W - 1)
                            sbyte index = (sbyte)((int)m - (int)TPW);  // -2^(W-1)+1 .. -1
                            precompIndex.Push(index);
                            bitBuffer = (bitBuffer & ~WMASK) + TPW; // bits -= m - 2^W
                            // a carried bit by adding 2^W is retained in the bit buffer
                        }
                        else {
                            // 1 <= m <= (2^(W-1) - 1)
                            sbyte index = (sbyte)m; // odd index
                            precompIndex.Push(index);
                            bitBuffer = (bitBuffer & ~WMASK); // bits -= m
                        }
                    }
                    else {
                        precompIndex.Push(0);
                    }

                    // shift bits
                    if (bitIndex < bitCount) {
                        // load next bit into the bit buffer (add to the carried bits in the bit buffer)
                        bitBuffer += (uint)((d[byteOffset - bitIndex / 8] >> (bitIndex % 8)) & 1) << W;
                        ++bitIndex;
                    }
                    else {
                        noMoreBits = true;
                    }
                    bitBuffer >>= 1;
                }
            }

            {
                ECPoint p = null;

                while (precompIndex.Count > 0) {
                    if (p != null) {
                        if (!PointDouble(ring, p, out p)) {
                            goto Failure;
                        }
                    }

                    ECPoint pre;
                    int index = precompIndex.Pop();
                    if (index > 0) {
                        pre = precomp[index];
                    }
                    else if (index < 0) {
                        pre = precompNeg[-index];
                        if (pre == null) {
                            // on EC over Fp, P={x, y} and -P={x, -y}
                            pre = precomp[-index];
                            if (!(pre is ECPointAtInfinity)) {
                                pre = new ECPoint(pre.X, ring.Difference(0, pre.Y));
                            }
                            precompNeg[-index] = pre;
                        }
                    }
                    else {
                        continue;
                    }

                    if (p != null) {
                        if (!PointAdd(ring, p, pre, out p)) {
                            goto Failure;
                        }
                    }
                    else {
                        p = pre;
                    }
                }

                if (p == null) {
                    // case of k = 0
                    goto Failure;
                }

                // succeeded
                p2 = p;
                return true;
            }

        Failure:
            p2 = null;
            return false;
        }
开发者ID:poderosaproject,项目名称:poderosa,代码行数:101,代码来源:EC.cs


注:本文中的Granados.Mono.Math.BigInteger.Difference方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。