本文整理汇总了C#中Encog.Persist.EncogWriteHelper.WriteProperty方法的典型用法代码示例。如果您正苦于以下问题:C# EncogWriteHelper.WriteProperty方法的具体用法?C# EncogWriteHelper.WriteProperty怎么用?C# EncogWriteHelper.WriteProperty使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Encog.Persist.EncogWriteHelper
的用法示例。
在下文中一共展示了EncogWriteHelper.WriteProperty方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Save
public void Save(Stream os, object obj)
{
BasicNetwork network;
FlatNetwork flat;
IActivationFunction function;
int num;
IActivationFunction[] activationFunctions;
int num2;
EncogWriteHelper helper = new EncogWriteHelper(os);
if ((((uint) num2) + ((uint) num)) >= 0)
{
goto Label_0290;
}
goto Label_0059;
Label_0024:
if (num < function.Params.Length)
{
helper.AddColumn(function.Params[num]);
goto Label_0080;
}
if (-1 == 0)
{
goto Label_00CC;
}
helper.WriteLine();
Label_0040:
num2++;
Label_0046:
if (num2 < activationFunctions.Length)
{
goto Label_00F8;
}
helper.Flush();
goto Label_0071;
Label_0059:
num++;
if (((uint) num2) <= uint.MaxValue)
{
goto Label_0024;
}
Label_0071:
if (1 != 0)
{
return;
}
goto Label_0290;
Label_0080:
if ((((uint) num2) + ((uint) num)) < 0)
{
goto Label_0135;
}
goto Label_0059;
Label_00CC:
helper.WriteProperty("biasActivation", flat.BiasActivation);
helper.AddSubSection("ACTIVATION");
activationFunctions = flat.ActivationFunctions;
num2 = 0;
goto Label_0046;
Label_00F8:
function = activationFunctions[num2];
if (((uint) num2) >= 0)
{
helper.AddColumn(function.GetType().Name);
}
if (0x7fffffff != 0)
{
num = 0;
goto Label_0024;
}
goto Label_0080;
Label_0135:
helper.WriteProperty("outputCount", flat.OutputCount);
if ((((uint) num) & 0) != 0)
{
goto Label_00F8;
}
helper.WriteProperty("weightIndex", flat.WeightIndex);
helper.WriteProperty("weights", flat.Weights);
goto Label_00CC;
Label_0290:
network = (BasicNetwork) obj;
flat = network.Structure.Flat;
helper.AddSection("BASIC");
helper.AddSubSection("PARAMS");
helper.AddProperties(network.Properties);
if (((uint) num2) < 0)
{
goto Label_0040;
}
helper.AddSubSection("NETWORK");
helper.WriteProperty("beginTraining", flat.BeginTraining);
helper.WriteProperty("connectionLimit", flat.ConnectionLimit);
helper.WriteProperty("contextTargetOffset", flat.ContextTargetOffset);
helper.WriteProperty("contextTargetSize", flat.ContextTargetSize);
helper.WriteProperty("endTraining", flat.EndTraining);
helper.WriteProperty("hasContext", flat.HasContext);
helper.WriteProperty("inputCount", flat.InputCount);
helper.WriteProperty("layerCounts", flat.LayerCounts);
helper.WriteProperty("layerFeedCounts", flat.LayerFeedCounts);
helper.WriteProperty("layerContextCount", flat.LayerContextCount);
//.........这里部分代码省略.........
示例2: Save
public void Save(Stream os, object obj)
{
CPNNetwork network;
EncogWriteHelper helper = new EncogWriteHelper(os);
if (0 == 0)
{
network = (CPNNetwork) obj;
goto Label_00A8;
}
Label_000D:
helper.WriteProperty("inputToInstar", network.WeightsInputToInstar);
helper.WriteProperty("instarToInput", network.WeightsInstarToOutstar);
helper.WriteProperty("winnerCount", network.WinnerCount);
if (-1 != 0)
{
helper.Flush();
return;
}
Label_0052:
helper.AddProperties(network.Properties);
if (0 == 0)
{
helper.AddSubSection("NETWORK");
helper.WriteProperty("inputCount", network.InputCount);
helper.WriteProperty("instar", network.InstarCount);
helper.WriteProperty("outputCount", network.OutputCount);
goto Label_00C5;
}
Label_00A8:
helper.AddSection("CPN");
helper.AddSubSection("PARAMS");
if (15 != 0)
{
goto Label_0052;
}
Label_00C5:
if (0 == 0)
{
goto Label_000D;
}
}
示例3: Save
/// <inheritdoc/>
public void Save(Stream os, Object obj)
{
var xout = new EncogWriteHelper(os);
var svm2 = (SupportVectorMachine) obj;
xout.AddSection("SVM");
xout.AddSubSection("PARAMS");
xout.AddProperties(svm2.Properties);
xout.AddSubSection("SVM-PARAM");
xout.WriteProperty(PersistConst.InputCount, svm2.InputCount);
xout.WriteProperty(ParamC, svm2.Params.C);
xout.WriteProperty(ParamCacheSize,
svm2.Params.cache_size);
xout.WriteProperty(ParamCoef0, svm2.Params.coef0);
xout.WriteProperty(ParamDegree, svm2.Params.degree);
xout.WriteProperty(ParamEps, svm2.Params.eps);
xout.WriteProperty(ParamGamma, svm2.Params.gamma);
xout.WriteProperty(ParamKernelType,
svm2.Params.kernel_type);
xout.WriteProperty(ParamNumWeight,
svm2.Params.nr_weight);
xout.WriteProperty(ParamNu, svm2.Params.nu);
xout.WriteProperty(ParamP, svm2.Params.p);
xout.WriteProperty(ParamProbability,
svm2.Params.probability);
xout.WriteProperty(ParamShrinking,
svm2.Params.shrinking);
/* xout.WriteProperty(PersistSVM.PARAM_START_ITERATIONS,
svm2.Params.statIterations); */
xout.WriteProperty(ParamSVMType, svm2.Params.svm_type);
xout.WriteProperty(ParamWeight, svm2.Params.weight);
xout.WriteProperty(ParamWeightLabel,
svm2.Params.weight_label);
if (svm2.Model != null)
{
xout.AddSubSection("SVM-MODEL");
try
{
var ba = new MemoryStream();
var w = new StreamWriter(ba);
svm.svm_save_model(w, svm2.Model);
var enc = new ASCIIEncoding();
xout.Write(enc.GetString(ba.ToArray()));
w.Close();
ba.Close();
}
catch (IOException ex)
{
throw new PersistError(ex);
}
}
xout.Flush();
}
示例4: Save
public virtual void Save(Stream os, object obj)
{
EncogWriteHelper xout = new EncogWriteHelper(os);
NEATNetwork network = (NEATNetwork) obj;
xout.AddSection("NEAT");
xout.AddSubSection("PARAMS");
xout.AddProperties(network.Properties);
xout.AddSubSection("NETWORK");
if (8 != 0)
{
}
xout.WriteProperty("inputCount", network.InputCount);
xout.WriteProperty("outputCount", network.OutputCount);
xout.WriteProperty("activationFunction", network.ActivationFunction);
xout.WriteProperty("outAct", network.OutputActivationFunction);
xout.WriteProperty("depth", network.NetworkDepth);
Label_0087:
xout.WriteProperty("snapshot", network.Snapshot);
xout.AddSubSection("NEURONS");
using (IEnumerator<NEATNeuron> enumerator = network.Neurons.GetEnumerator())
{
NEATNeuron current;
goto Label_00E3;
Label_00B2:
if (8 == 0)
{
goto Label_00F6;
}
xout.AddColumn(current.ActivationResponse);
xout.AddColumn(current.SplitX);
xout.AddColumn(current.SplitY);
xout.WriteLine();
Label_00E3:
if (!enumerator.MoveNext())
{
goto Label_0124;
}
current = enumerator.Current;
Label_00F6:
xout.AddColumn((int) current.NeuronID);
xout.AddColumn(PersistNEATPopulation.NeuronTypeToString(current.NeuronType));
goto Label_00B2;
}
Label_0124:
xout.AddSubSection("LINKS");
foreach (NEATNeuron neuron2 in network.Neurons)
{
foreach (NEATLink link in neuron2.OutputboundLinks)
{
WriteLink(xout, link);
}
}
xout.Flush();
if (-1 != 0)
{
return;
}
goto Label_0087;
}
示例5: SaveSubSection
/// <summary>
/// Save a subsection.
/// </summary>
///
/// <param name="xout">The output file.</param>
/// <param name="section">The section.</param>
/// <param name="subSection">The subsection.</param>
private void SaveSubSection(EncogWriteHelper xout,
String section, String subSection)
{
if (!section.Equals(xout.CurrentSection))
{
xout.AddSection(section);
}
xout.AddSubSection(subSection);
List<PropertyEntry> list = PropertyConstraints.Instance
.GetEntries(section, subSection);
list.Sort();
foreach (PropertyEntry entry in list)
{
String key = section + ":" + subSection + "_"
+ entry.Name;
String v = _script.Properties.GetPropertyString(
key);
xout.WriteProperty(entry.Name, v ?? "");
}
}
示例6: Save
/// <inheritdoc/>
public void Save(Stream os, Object obj)
{
var output = new EncogWriteHelper(os);
var pop = (NEATPopulation)obj;
output.AddSection("NEAT-POPULATION");
output.AddSubSection("CONFIG");
output.WriteProperty(PersistConst.ActivationCycles, pop.ActivationCycles);
if (pop.IsHyperNEAT)
{
output.WriteProperty(NEATPopulation.PropertyNEATActivation,TypeCppn);
}
else
{
IActivationFunction af = pop.ActivationFunctions.Contents[0].obj;
output.WriteProperty(NEATPopulation.PropertyNEATActivation, af);
}
output.WriteProperty(PersistConst.InputCount, pop.InputCount);
output.WriteProperty(PersistConst.OutputCount, pop.OutputCount);
output.WriteProperty(NEATPopulation.PropertyCycles, pop.ActivationCycles);
output.WriteProperty(NEATPopulation.PropertyPopulationSize, pop.PopulationSize);
output.WriteProperty(NEATPopulation.PropertySurvivalRate, pop.SurvivalRate);
output.AddSubSection("INNOVATIONS");
if (pop.Innovations != null)
{
foreach (string key in pop.Innovations.Innovations.Keys)
{
NEATInnovation innovation = pop.Innovations.Innovations[key];
output.AddColumn(key);
output.AddColumn(innovation.InnovationId);
output.AddColumn(innovation.NeuronId);
output.WriteLine();
}
}
output.AddSubSection("SPECIES");
// make sure the best species goes first
ISpecies bestSpecies = pop.DetermineBestSpecies();
if (bestSpecies != null)
{
SaveSpecies(output, bestSpecies);
}
// now write the other species, other than the best one
foreach (ISpecies species in pop.Species)
{
if (species != bestSpecies)
{
SaveSpecies(output, species);
}
}
output.Flush();
}
示例7: Save
/// <summary>
///
/// </summary>
///
public void Save(Stream os, Object obj)
{
var xout = new EncogWriteHelper(os);
var pnn = (BasicPNN) obj;
xout.AddSection("PNN");
xout.AddSubSection("PARAMS");
xout.AddProperties(pnn.Properties);
xout.AddSubSection("NETWORK");
xout.WriteProperty(PersistConst.Error, pnn.Error);
xout.WriteProperty(PersistConst.InputCount, pnn.InputCount);
xout.WriteProperty(PersistConst.Kernel,
KernelToString(pnn.Kernel));
xout.WriteProperty(PersistConst.OutputCount, pnn.OutputCount);
xout.WriteProperty(PropertyOutputMode,
OutputModeToString(pnn.OutputMode));
xout.WriteProperty(PersistConst.Sigma, pnn.Sigma);
xout.AddSubSection("SAMPLES");
if (pnn.Samples != null)
{
foreach (IMLDataPair pair in pnn.Samples)
{
for (int i = 0; i < pair.Input.Count; i++)
{
xout.AddColumn(pair.Input[i]);
}
for (int i = 0; i < pair.Ideal.Count; i++)
{
xout.AddColumn(pair.Ideal[i]);
}
xout.WriteLine();
}
}
xout.Flush();
}
示例8: Save
//.........这里部分代码省略.........
helper.AddColumn(genome2.SpeciesID);
goto Label_02FB;
Label_0346:
if (0 == 0)
{
goto Label_01F1;
}
if (0 != 0)
{
goto Label_02FB;
}
goto Label_030A;
}
Label_0361:
helper.AddSubSection("SPECIES");
goto Label_0018;
Label_03B2:
using (IEnumerator<IInnovation> enumerator = population.Innovations.Innovations.GetEnumerator())
{
IInnovation innovation;
NEATInnovation innovation2;
goto Label_03CC;
Label_03C6:
helper.WriteLine();
Label_03CC:
if (enumerator.MoveNext())
{
goto Label_0452;
}
goto Label_00DD;
Label_03DA:
helper.AddColumn(innovation2.SplitY);
helper.AddColumn(innovation2.NeuronID);
helper.AddColumn(innovation2.FromNeuronID);
helper.AddColumn(innovation2.ToNeuronID);
goto Label_03C6;
Label_040C:
if (0 != 0)
{
goto Label_03CC;
}
helper.AddColumn(innovation2.InnovationID);
helper.AddColumn(InnovationTypeToString(innovation2.InnovationType));
helper.AddColumn(NeuronTypeToString(innovation2.NeuronType));
helper.AddColumn(innovation2.SplitX);
goto Label_03DA;
Label_0452:
innovation = enumerator.Current;
innovation2 = (NEATInnovation) innovation;
if (3 != 0)
{
goto Label_040C;
}
goto Label_00DD;
}
if (0x7fffffff != 0)
{
goto Label_00D2;
}
goto Label_0018;
if (-2147483648 != 0)
{
goto Label_000D;
}
Label_05B6:
helper.AddSection("NEAT-POPULATION");
helper.AddSubSection("CONFIG");
helper.WriteProperty("snapshot", population.Snapshot);
helper.WriteProperty("outAct", population.OutputActivationFunction);
helper.WriteProperty("neatAct", population.NeatActivationFunction);
if (0 != 0)
{
goto Label_00DD;
}
if (2 != 0)
{
helper.WriteProperty("inputCount", population.InputCount);
helper.WriteProperty("outputCount", population.OutputCount);
helper.WriteProperty("oldAgePenalty", population.OldAgePenalty);
}
helper.WriteProperty("oldAgeThreshold", population.OldAgeThreshold);
helper.WriteProperty("populationSize", population.PopulationSize);
helper.WriteProperty("survivalRate", population.SurvivalRate);
if (0 != 0)
{
goto Label_0018;
}
helper.WriteProperty("youngAgeThreshold", population.YoungBonusAgeThreshold);
helper.WriteProperty("youngAgeBonus", population.YoungScoreBonus);
helper.WriteProperty("nextGenomeID", population.GenomeIDGenerate.CurrentID);
helper.WriteProperty("nextInnovationID", population.InnovationIDGenerate.CurrentID);
helper.WriteProperty("nextGeneID", population.GeneIDGenerate.CurrentID);
helper.WriteProperty("nextSpeciesID", population.SpeciesIDGenerate.CurrentID);
helper.AddSubSection("INNOVATIONS");
if (0x7fffffff != 0)
{
goto Label_00D2;
}
goto Label_03B2;
}
示例9: Save
public void Save(Stream os, object obj)
{
HopfieldNetwork network;
EncogWriteHelper helper = new EncogWriteHelper(os);
goto Label_00A2;
Label_0028:
helper.WriteProperty("neurons", network.NeuronCount);
helper.Flush();
if (4 != 0)
{
return;
}
if (4 != 0)
{
goto Label_00A2;
}
goto Label_0064;
Label_004C:
helper.WriteProperty("output", network.CurrentState.Data);
goto Label_0028;
Label_0064:
helper.AddSection("HOPFIELD");
helper.AddSubSection("PARAMS");
if (2 == 0)
{
goto Label_004C;
}
helper.AddProperties(network.Properties);
helper.AddSubSection("NETWORK");
if (0 == 0)
{
helper.WriteProperty("weights", network.Weights);
goto Label_004C;
}
goto Label_0028;
Label_00A2:
network = (HopfieldNetwork) obj;
goto Label_0064;
}
示例10: Save
public void Save(Stream os, object obj)
{
SupportVectorMachine machine;
EncogWriteHelper helper = new EncogWriteHelper(os);
if (8 != 0)
{
}
Label_026A:
machine = (SupportVectorMachine) obj;
helper.AddSection("SVM");
if (0 == 0)
{
while (true)
{
helper.AddSubSection("PARAMS");
helper.AddProperties(machine.Properties);
helper.AddSubSection("SVM-PARAM");
helper.WriteProperty("inputCount", machine.InputCount);
helper.WriteProperty("C", machine.Params.C);
if (0 == 0)
{
helper.WriteProperty("cacheSize", machine.Params.cache_size);
if (-2 == 0)
{
goto Label_026A;
}
helper.WriteProperty("coef0", machine.Params.coef0);
helper.WriteProperty("degree", machine.Params.degree);
helper.WriteProperty("eps", machine.Params.eps);
helper.WriteProperty("gamma", machine.Params.gamma);
helper.WriteProperty("kernelType", machine.Params.kernel_type);
}
helper.WriteProperty("nrWeight", machine.Params.nr_weight);
if (1 != 0)
{
helper.WriteProperty("nu", machine.Params.nu);
helper.WriteProperty("p", machine.Params.p);
helper.WriteProperty("probability", machine.Params.probability);
helper.WriteProperty("shrinking", machine.Params.shrinking);
helper.WriteProperty("svmType", machine.Params.svm_type);
helper.WriteProperty("weight", machine.Params.weight);
helper.WriteProperty("weightLabel", machine.Params.weight_label);
break;
}
}
}
Label_0092:
while (machine.Model != null)
{
helper.AddSubSection("SVM-MODEL");
try
{
StreamWriter writer;
ASCIIEncoding encoding;
MemoryStream stream = new MemoryStream();
if (1 != 0)
{
goto Label_005F;
}
Label_003E:
helper.Write(encoding.GetString(stream.ToArray()));
writer.Close();
stream.Close();
break;
Label_005F:
writer = new StreamWriter(stream);
if (0 == 0)
{
svm.svm_save_model(writer, machine.Model);
}
encoding = new ASCIIEncoding();
goto Label_003E;
}
catch (IOException exception)
{
throw new PersistError(exception);
}
}
while (true)
{
helper.Flush();
if (-2147483648 != 0)
{
return;
}
if (0 != 0)
{
goto Label_0092;
}
}
}
示例11: Save
/// <summary>
///
/// </summary>
///
public void Save(Stream os, Object obj)
{
var xout = new EncogWriteHelper(os);
var bam = (BAMNetwork) obj;
xout.AddSection("BAM");
xout.AddSubSection("PARAMS");
xout.AddProperties(bam.Properties);
xout.AddSubSection("NETWORK");
xout.WriteProperty(PersistConst.PropertyF1Count, bam.F1Count);
xout.WriteProperty(PersistConst.PropertyF2Count, bam.F2Count);
xout.WriteProperty(PersistConst.PropertyWeightsF1F2,
bam.WeightsF1ToF2);
xout.WriteProperty(PersistConst.PropertyWeightsF2F1,
bam.WeightsF2ToF1);
xout.Flush();
}
示例12: Save
/// <inheritdoc/>
public void Save(Stream os, Object obj)
{
EncogWriteHelper writer = new EncogWriteHelper(os);
HiddenMarkovModel net = (HiddenMarkovModel)obj;
writer.AddSection("HMM");
writer.AddSubSection("PARAMS");
writer.AddProperties(net.Properties);
writer.AddSubSection("CONFIG");
writer.WriteProperty(HiddenMarkovModel.TAG_STATES, net.StateCount);
if (net.Items != null)
{
writer.WriteProperty(HiddenMarkovModel.TAG_ITEMS, net.Items);
}
writer.WriteProperty(HiddenMarkovModel.TAG_PI, net.Pi);
writer.WriteProperty(HiddenMarkovModel.TAG_TRANSITION, new Matrix(net.TransitionProbability));
for (int i = 0; i < net.StateCount; i++)
{
writer.AddSubSection("DISTRIBUTION-" + i);
IStateDistribution sd = net.StateDistributions[i];
writer.WriteProperty(HiddenMarkovModel.TAG_DIST_TYPE, sd.GetType().Name);
if (sd is ContinousDistribution)
{
ContinousDistribution cDist = (ContinousDistribution)sd;
writer.WriteProperty(HiddenMarkovModel.TAG_MEAN, cDist.Mean);
writer.WriteProperty(HiddenMarkovModel.TAG_COVARIANCE, cDist.Covariance);
}
else if (sd is DiscreteDistribution)
{
DiscreteDistribution dDist = (DiscreteDistribution)sd;
writer.WriteProperty(HiddenMarkovModel.TAG_PROBABILITIES, new Matrix(dDist.Probabilities));
}
}
writer.Flush();
}
示例13: Save
public void Save(Stream os, object obj)
{
EncogWriteHelper helper = new EncogWriteHelper(os);
while (true)
{
SOMNetwork network = (SOMNetwork) obj;
helper.AddSection("SOM");
helper.AddSubSection("PARAMS");
helper.AddProperties(network.Properties);
helper.AddSubSection("NETWORK");
helper.WriteProperty("weights", network.Weights);
helper.WriteProperty("inputCount", network.InputCount);
if (0 == 0)
{
helper.WriteProperty("outputCount", network.OutputCount);
helper.Flush();
}
if ((0 != 0) || (0 == 0))
{
return;
}
}
}
示例14: Save
//.........这里部分代码省略.........
}
helper.AddSubSection("RBF");
if ((((uint) num5) | 15) != 0)
{
goto Label_01B0;
}
goto Label_011D;
Label_0117:
num4++;
Label_011D:
if (num4 < @params.Length)
{
num = @params[num4];
helper.AddColumn(num);
goto Label_0117;
}
Label_0125:
helper.WriteLine();
num3++;
goto Label_00FA;
Label_0161:
helper.AddColumn(function.GetType().Name);
@params = function.Params;
Label_017A:
num4 = 0;
if ((((uint) num5) + ((uint) index)) > uint.MaxValue)
{
goto Label_03BC;
}
if ((((uint) num4) + ((uint) num)) <= uint.MaxValue)
{
goto Label_011D;
}
Label_01B0:
if (((uint) num3) >= 0)
{
goto Label_00C6;
}
Label_01C2:
if (0xff == 0)
{
goto Label_017A;
}
num3 = 0;
if ((((uint) index) | 1) != 0)
{
goto Label_00FA;
}
goto Label_00C6;
Label_020D:
helper.WriteProperty("biasActivation", flat.BiasActivation);
helper.AddSubSection("ACTIVATION");
activationFunctions = flat.ActivationFunctions;
goto Label_01C2;
Label_02A1:
helper.WriteProperty("layerContextCount", flat.LayerContextCount);
helper.WriteProperty("layerIndex", flat.LayerIndex);
if ((((uint) index) + ((uint) num)) < 0)
{
goto Label_0117;
}
helper.WriteProperty("output", flat.LayerOutput);
helper.WriteProperty("outputCount", flat.OutputCount);
helper.WriteProperty("weightIndex", flat.WeightIndex);
if ((((uint) num) - ((uint) num5)) < 0)
{
goto Label_03F8;
}
helper.WriteProperty("weights", flat.Weights);
goto Label_020D;
Label_02E5:
helper.WriteProperty("inputCount", flat.InputCount);
helper.WriteProperty("layerCounts", flat.LayerCounts);
if ((((uint) num4) - ((uint) index)) < 0)
{
goto Label_0161;
}
helper.WriteProperty("layerFeedCounts", flat.LayerFeedCounts);
if (0x7fffffff != 0)
{
goto Label_02A1;
}
Label_0378:
helper.WriteProperty("beginTraining", flat.BeginTraining);
helper.WriteProperty("connectionLimit", flat.ConnectionLimit);
helper.WriteProperty("contextTargetOffset", flat.ContextTargetOffset);
helper.WriteProperty("contextTargetSize", flat.ContextTargetSize);
Label_03BC:
helper.WriteProperty("endTraining", flat.EndTraining);
helper.WriteProperty("hasContext", flat.HasContext);
if ((((uint) num5) | 3) == 0)
{
goto Label_006E;
}
goto Label_02E5;
Label_03F8:
helper.AddProperties(network.Properties);
helper.AddSubSection("NETWORK");
goto Label_0378;
}
示例15: Save
public void Save(Stream os, object obj)
{
EncogWriteHelper helper = new EncogWriteHelper(os);
BAMNetwork network = (BAMNetwork) obj;
helper.AddSection("BAM");
if (0 == 0)
{
helper.AddSubSection("PARAMS");
helper.AddProperties(network.Properties);
if (0 == 0)
{
helper.AddSubSection("NETWORK");
helper.WriteProperty("f1Count", network.F1Count);
helper.WriteProperty("f2Count", network.F2Count);
helper.WriteProperty("weightsF1F2", network.WeightsF1ToF2);
helper.WriteProperty("weightsF2F1", network.WeightsF2ToF1);
helper.Flush();
}
}
}