当前位置: 首页>>代码示例>>C#>>正文


C# ResilientPropagation.Iteration方法代码示例

本文整理汇总了C#中Encog.Neural.Networks.Training.Propagation.Resilient.ResilientPropagation.Iteration方法的典型用法代码示例。如果您正苦于以下问题:C# ResilientPropagation.Iteration方法的具体用法?C# ResilientPropagation.Iteration怎么用?C# ResilientPropagation.Iteration使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Encog.Neural.Networks.Training.Propagation.Resilient.ResilientPropagation的用法示例。


在下文中一共展示了ResilientPropagation.Iteration方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: TestRPROPCont

        public void TestRPROPCont()
        {
            IMLDataSet trainingSet = XOR.CreateXORDataSet();
            BasicNetwork net1 = XOR.CreateUnTrainedXOR();
            BasicNetwork net2 = XOR.CreateUnTrainedXOR();

            ResilientPropagation rprop1 = new ResilientPropagation(net1, trainingSet);
            ResilientPropagation rprop2 = new ResilientPropagation(net2, trainingSet);

            rprop1.Iteration();
            rprop1.Iteration();

            rprop2.Iteration();
            rprop2.Iteration();

            TrainingContinuation cont = rprop2.Pause();

            ResilientPropagation rprop3 = new ResilientPropagation(net2, trainingSet);
            rprop3.Resume(cont);

            rprop1.Iteration();
            rprop3.Iteration();

            for (int i = 0; i < net1.Flat.Weights.Length; i++)
            {
                Assert.AreEqual(net1.Flat.Weights[i], net2.Flat.Weights[i], 0.0001);
            }
        }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:28,代码来源:TestPersistTrainingContinuation.cs

示例2: TestRPROPContPersistEG

        public void TestRPROPContPersistEG()
        {
            IMLDataSet trainingSet = XOR.CreateXORDataSet();
            BasicNetwork net1 = XOR.CreateUnTrainedXOR();
            BasicNetwork net2 = XOR.CreateUnTrainedXOR();

            ResilientPropagation rprop1 = new ResilientPropagation(net1, trainingSet);
            ResilientPropagation rprop2 = new ResilientPropagation(net2, trainingSet);

            rprop1.Iteration();
            rprop1.Iteration();

            rprop2.Iteration();
            rprop2.Iteration();

            TrainingContinuation cont = rprop2.Pause();

            EncogDirectoryPersistence.SaveObject(EG_FILENAME, cont);
            TrainingContinuation cont2 = (TrainingContinuation)EncogDirectoryPersistence.LoadObject(EG_FILENAME);

            ResilientPropagation rprop3 = new ResilientPropagation(net2, trainingSet);
            rprop3.Resume(cont2);

            rprop1.Iteration();
            rprop3.Iteration();


            for (int i = 0; i < net1.Flat.Weights.Length; i++)
            {
                Assert.AreEqual(net1.Flat.Weights[i], net2.Flat.Weights[i], 0.0001);
            }
        }
开发者ID:OperatorOverload,项目名称:encog-cs,代码行数:32,代码来源:TestPersistTrainingContinuation.cs

示例3: Main

        static void Main(string[] args)
        {
            //create a neural network withtout using a factory
            var network = new BasicNetwork();
            network.AddLayer(new BasicLayer(null, true, 2));
            network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 2));
            network.AddLayer(new BasicLayer(new ActivationSigmoid(), false, 1));

            network.Structure.FinalizeStructure();
            network.Reset();

            IMLDataSet trainingSet = new BasicMLDataSet(XORInput, XORIdeal);
            IMLTrain train = new ResilientPropagation(network, trainingSet);

            int epoch = 1;
            do
            {
                train.Iteration();
                Console.WriteLine($"Epoch #{epoch} Error: {train.Error}");
                epoch++;
            } while (train.Error > 0.01);
            train.FinishTraining();

            Console.WriteLine("Neural Network Results:");
            foreach (IMLDataPair iPair in trainingSet)
            {
                IMLData output = network.Compute(iPair.Input);
                Console.WriteLine($"{iPair.Input[0]}, {iPair.Input[0]}, actual={output[0]}, ideal={iPair.Ideal[0]}");
            }

            EncogFramework.Instance.Shutdown();

            Console.ReadKey();
        }
开发者ID:zerazobz,项目名称:TestEncog,代码行数:34,代码来源:Program.cs

示例4: Main

        static void Main(string[] args)
        {
            var network = new BasicNetwork();
            network.AddLayer(new BasicLayer(null, true, 2));
            network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 3));
            network.AddLayer(new BasicLayer(new ActivationSigmoid(), false, 1));
            network.Structure.FinalizeStructure();
            network.Reset();

            var trainingSet = new BasicMLDataSet(XORInput, XORIdeal);
            var train = new ResilientPropagation(network, trainingSet);
            var epoch = 1;
            do
            {
                train.Iteration();

            } while (train.Error > 0.01);

            train.FinishTraining();

            foreach (var pair in trainingSet)
            {
                var output = network.Compute(pair.Input);
                Console.WriteLine(pair.Input[0] + @", " + pair.Input[1] + @" , actual=" + output[0] + @", ideal=" + pair.Ideal[0]);
            }

            EncogFramework.Instance.Shutdown();
            Console.ReadLine();
        }
开发者ID:akucherk,项目名称:HelloSystem,代码行数:29,代码来源:Program.cs

示例5: Preprocessing_Completed

        private void Preprocessing_Completed(object sender, RunWorkerCompletedEventArgs e)
        {
            worker.ReportProgress(0, "Creating Network...");
            BasicNetwork Network = new BasicNetwork();
            Network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, DataContainer.NeuralNetwork.Data.InputSize));
            Network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 50));
            Network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, DataContainer.NeuralNetwork.Data.IdealSize));
            Network.Structure.FinalizeStructure();
            Network.Reset();
            DataContainer.NeuralNetwork.Network = Network;

            ResilientPropagation training = new ResilientPropagation(DataContainer.NeuralNetwork.Network, DataContainer.NeuralNetwork.Data);
            worker.ReportProgress(0, "Running Training: Epoch 0");
            for(int i = 0; i < 200; i++)
            {
                training.Iteration();
                worker.ReportProgress(0, "Running Training: Epoch " + (i+1).ToString() + "     Current Training Error : " + training.Error.ToString());
                if(worker.CancellationPending == true)
                {
                    completed = true;
                    return;
                }

            }
            completed = true;
        }
开发者ID:ebosscha,项目名称:RailML-Neural,代码行数:26,代码来源:PerLineClassification.cs

示例6: TestRPROPConsistency

        public void TestRPROPConsistency()
        {
            IMLDataSet training = EncoderTrainingFactory.generateTraining(4, false);
            var network = EncogUtility.SimpleFeedForward(4, 2, 0, 4, true);
            (new ConsistentRandomizer(-1, 1, 50)).Randomize(network);
            var rprop = new ResilientPropagation(network, training);
            for (var i = 0; i < 5; i++)
            {
                rprop.Iteration();
            }
            Assert.IsTrue(CompareArray.Compare(ExpectedWeights1, network.Flat.Weights,0.00001));

            for (var i = 0; i < 5; i++)
            {
                rprop.Iteration();
            }
            Assert.IsTrue(CompareArray.Compare(ExpectedWeights2, network.Flat.Weights, 0.00001));

            var e = network.CalculateError(training);
            Assert.AreEqual(0.0767386807494191, e, 0.00001);
        }
开发者ID:MerlinBrasil,项目名称:encog-dotnet-core,代码行数:21,代码来源:TestConsistency.cs

示例7: TrainNetwork

        public ResilientPropagation TrainNetwork(BasicNetwork network, BasicMLDataSet trainingData)
        {
            var trainedNetwork = new ResilientPropagation(network, trainingData);
            var epoch = 0;
            do
            {
                trainedNetwork.Iteration();
                epoch++;
                Console.WriteLine("Epoch:{0}, Error{1}", epoch, trainedNetwork.Error);
            } while (trainedNetwork.Error > 0.01);

            return trainedNetwork;
        }
开发者ID:MacarioTala,项目名称:Learning-Machine-Learning,代码行数:13,代码来源:BasicNeuralNetFunctions.cs

示例8: EvaluateTrain

        /// <summary>
        /// Evaluate how long it takes to calculate the error for the network. This
        /// causes each of the training pairs to be run through the network. The
        /// network is evaluated 10 times and the lowest time is reported. 
        /// </summary>
        /// <param name="network">The training data to use.</param>
        /// <param name="training">The number of seconds that it took.</param>
        /// <returns></returns>
        public static int EvaluateTrain(BasicNetwork network, IMLDataSet training)
        {
            // train the neural network
            IMLTrain train = new ResilientPropagation(network, training);

            int iterations = 0;
            var watch = new Stopwatch();
            watch.Start();
            while (watch.ElapsedMilliseconds < (10*Milis))
            {
                iterations++;
                train.Iteration();
            }

            return iterations;
        }
开发者ID:encog,项目名称:encog-silverlight-core,代码行数:24,代码来源:Evaluate.cs

示例9: EvaluateMPROP

 public double EvaluateMPROP(BasicNetwork network, IMLDataSet data)
 {
     var train = new ResilientPropagation(network, data);
     long start = DateTime.Now.Ticks;
     Console.WriteLine(@"Training 20 Iterations with MPROP");
     for (int i = 1; i <= 20; i++)
     {
         train.Iteration();
         Console.WriteLine("Iteration #" + i + " Error:" + train.Error);
     }
     //train.finishTraining();
     long stop = DateTime.Now.Ticks;
     double diff = new TimeSpan(stop - start).Seconds;
     Console.WriteLine("MPROP Result:" + diff + " seconds.");
     Console.WriteLine("Final MPROP error: " + network.CalculateError(data));
     return diff;
 }
开发者ID:Romiko,项目名称:encog-dotnet-core,代码行数:17,代码来源:MultiThreadBenchmark.cs

示例10: EvaluateTrain

 public static int EvaluateTrain(BasicNetwork network, IMLDataSet training)
 {
     int num;
     IMLTrain train = new ResilientPropagation(network, training);
     if (0 == 0)
     {
         num = 0;
     }
     Stopwatch stopwatch = new Stopwatch();
     stopwatch.Start();
     while (stopwatch.ElapsedMilliseconds < 0x2710L)
     {
         num++;
         train.Iteration();
     }
     return num;
 }
开发者ID:neismit,项目名称:emds,代码行数:17,代码来源:Evaluate.cs

示例11: Main

        static void Main(string[] args)
        {
            double[][] XOR_Input =
            {
                new[] {0.0,0.0},
                new[] {1.0,0.0},
                new[] {0.0,1.0},
                new[] {1.0,1.0}
             };

            double[][] XOR_Ideal =
            {
                new[] {0.0},
                new[] {1.0},
                new[] {1.0},
                new[] {0.0}
            };

            var trainingSet = new BasicMLDataSet(XOR_Input, XOR_Ideal);

            BasicNetwork network = CreateNetwork();

            var train = new ResilientPropagation(network, trainingSet);

            int epoch = 1;
            do
            {

                train.Iteration();
                epoch++;
                Console.WriteLine("Iteration No :{0}, Error: {1}", epoch, train.Error);

            } while (train.Error > 0.001);

            foreach (var item in trainingSet)
            {

                var output = network.Compute(item.Input);
                Console.WriteLine("Input : {0}, {1} Ideal : {2} Actual : {3}", item.Input[0], item.Input[1], item.Ideal[0], output[0]);
            }

            Console.WriteLine("press any key to exit...");
            Console.ReadLine();
        }
开发者ID:nmukh,项目名称:neural-networks,代码行数:44,代码来源:XOR-Demo.cs

示例12: EvaluateTrain

        /// <summary>
        /// Evaluate how long it takes to calculate the error for the network. This
        /// causes each of the training pairs to be run through the network. The
        /// network is evaluated 10 times and the lowest time is reported. 
        /// </summary>
        /// <param name="network">The training data to use.</param>
        /// <param name="training">The number of seconds that it took.</param>
        /// <returns></returns>
        public static int EvaluateTrain(BasicNetwork network, IMLDataSet training)
        {
            // train the neural network
            IMLTrain train = new ResilientPropagation(network, training);

            int iterations = 0;
			const int milis10 = Milis * 10;
            var watch = new Stopwatch();
            watch.Start();
            while (true)
            {
                iterations++;
                train.Iteration();

				if((iterations & 0xff) == 0 && watch.ElapsedMilliseconds < milis10) break;
            }

            return iterations;
        }
开发者ID:jongh0,项目名称:MTree,代码行数:27,代码来源:Evaluate.cs

示例13: Run

        public double Run(List<int> topoplogy, int iterations)
        {
            _Network = new BasicNetwork();
            _Network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, _Features));
            foreach (int layer in topoplogy)
            {
                _Network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, layer));
            }
            _Network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 1));
            _Network.Structure.FinalizeStructure();
            _Network.Reset();

            //Encog.Neural.Networks.Training.Propagation.Gradient.
            ITrain train = new ResilientPropagation(_Network, _TrainingSet);

            for (int i = 0; i < iterations; i++)
            {
                train.Iteration();
            }
            return train.Error;
        }
开发者ID:KBrizzle,项目名称:TimeSeries,代码行数:21,代码来源:NueralNetwork.cs

示例14: Evaluate

        public static int Evaluate(BasicNetwork network, IMLDataSet training)
        {
            ResilientPropagation rprop = new ResilientPropagation(network, training);
            int iterations = 0;

            for (; ; )
            {
                rprop.Iteration();                
                iterations++;
                if (rprop.Error < TARGET_ERROR)
                {
                    return iterations;
                }

                if (iterations > 1000)
                {
                    iterations = 0;
                    return -1;
                }
            }
        }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:21,代码来源:ElliottBenchmark.cs

示例15: XORTest

        private static void XORTest()
        {
            double[][] XOR_Input =
            {
                new[] {0.0, 0.0},
                new[] {1.0, 0.0},
                new[] {0.0, 1.0},
                new[] {1.0, 1.0}
            };

            double[][] XOR_Ideal =
            {
                new[] {0.0},
                new[] {1.0},
                new[] {1.0},
                new[] {0.0}
            };

            var trainingSet = new BasicMLDataSet(XOR_Input, XOR_Ideal);

            var network = CreateNetwork();

            var train = new ResilientPropagation(network, trainingSet);

            int epoch = 1;
            do
            {
                train.Iteration();
                epoch++;
                Console.WriteLine($"Iteration No: {epoch}, Error: {train.Error}");
            } while (train.Error > 0.001);

            foreach (var item in trainingSet)
            {
                var output = network.Compute(item.Input);
                Console.WriteLine($"Input : {item.Input[0]}, {item.Input[1]}, Ideal: {item.Ideal[0]}, Actual : {output[0]}");
            }
        }
开发者ID:podgito,项目名称:MachineLearning,代码行数:38,代码来源:Program.cs


注:本文中的Encog.Neural.Networks.Training.Propagation.Resilient.ResilientPropagation.Iteration方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。