本文整理汇总了C#中Encog.ML.Data.Basic.BasicMLData类的典型用法代码示例。如果您正苦于以下问题:C# BasicMLData类的具体用法?C# BasicMLData怎么用?C# BasicMLData使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
BasicMLData类属于Encog.ML.Data.Basic命名空间,在下文中一共展示了BasicMLData类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: tryMove
private double tryMove(int[,] board, Move move)
{
var input = new BasicMLData (Board.SIZE * Board.SIZE);
int index = 0;
for (int x = 0; x < Board.SIZE; x++) {
for (int y = 0; y < Board.SIZE; y++) {
if (board [x, y] == aXon.TicTacToe.Game.TicTacToe.NOUGHTS) {
input [index] = -1;
} else if (board [x, y] == aXon.TicTacToe.Game.TicTacToe.CROSSES) {
input [index] = 1;
} else if (board [x, y] == aXon.TicTacToe.Game.TicTacToe.EMPTY) {
input [index] = 0;
}
if ((x == move.x) && (y == move.y)) {
input [index] = -1;
}
index++;
}
}
//var input = new BasicMLData(Board.SIZE*Board.SIZE);
IMLData output = this.network.Compute (input);
return output [0];
}
示例2: TestSOM
public void TestSOM()
{
// create the training set
IMLDataSet training = new BasicMLDataSet(
SOMInput, null);
// Create the neural network.
var network = new SOMNetwork(4, 2) {Weights = new Matrix(MatrixArray)};
var train = new BasicTrainSOM(network, 0.4,
training, new NeighborhoodSingle()) {ForceWinner = true};
int iteration = 0;
for (iteration = 0; iteration <= 100; iteration++)
{
train.Iteration();
}
IMLData data1 = new BasicMLData(
SOMInput[0]);
IMLData data2 = new BasicMLData(
SOMInput[1]);
int result1 = network.Classify(data1);
int result2 = network.Classify(data2);
Assert.IsTrue(result1 != result2);
}
示例3: ScorePilot
public int ScorePilot()
{
var sim = new LanderSimulator();
while (sim.Flying)
{
IMLData input = new BasicMLData(3);
input[0] = _fuelStats.Normalize(sim.Fuel);
input[1] = _altitudeStats.Normalize(sim.Altitude);
input[2] = _velocityStats.Normalize(sim.Velocity);
IMLData output = _network.Compute(input);
double value = output[0];
bool thrust;
if (value > 0)
{
thrust = true;
if (_track)
Console.WriteLine(@"THRUST");
}
else
thrust = false;
sim.Turn(thrust);
if (_track)
Console.WriteLine(sim.Telemetry());
}
return (sim.Score);
}
示例4: JacobianChainRule
public JacobianChainRule(BasicNetwork network, IMLDataSet indexableTraining)
{
BasicMLData data;
BasicMLData data2;
if (0 == 0)
{
goto Label_0055;
}
Label_0009:
this._x61830ac74d65acc3 = new BasicMLDataPair(data, data2);
return;
Label_0055:
this._xb12276308f0fa6d9 = indexableTraining;
if (0 == 0)
{
}
this._x87a7fc6a72741c2e = network;
this._xabb126b401219ba2 = network.Structure.CalculateSize();
this._x530ae94d583e0ea1 = (int) this._xb12276308f0fa6d9.Count;
this._xbdeab667c25bbc32 = EngineArray.AllocateDouble2D(this._x530ae94d583e0ea1, this._xabb126b401219ba2);
this._xc8a462f994253347 = new double[this._x530ae94d583e0ea1];
data = new BasicMLData(this._xb12276308f0fa6d9.InputSize);
data2 = new BasicMLData(this._xb12276308f0fa6d9.IdealSize);
if (-2147483648 != 0)
{
goto Label_0009;
}
goto Label_0055;
}
示例5: LoadCSVTOMemory
/// <summary>
/// Load a CSV file into a memory dataset.
/// </summary>
///
/// <param name="format">The CSV format to use.</param>
/// <param name="filename">The filename to load.</param>
/// <param name="headers">True if there is a header line.</param>
/// <param name="inputSize">The input size. Input always comes first in a file.</param>
/// <param name="idealSize">The ideal size, 0 for unsupervised.</param>
/// <returns>A NeuralDataSet that holds the contents of the CSV file.</returns>
public static IMLDataSet LoadCSVTOMemory(CSVFormat format, String filename,
bool headers, int inputSize, int idealSize)
{
var result = new BasicMLDataSet();
var csv = new ReadCSV(filename, headers, format);
while (csv.Next())
{
BasicMLData ideal = null;
int index = 0;
var input = new BasicMLData(inputSize);
for (int i = 0; i < inputSize; i++)
{
double d = csv.GetDouble(index++);
input[i] = d;
}
if (idealSize > 0)
{
ideal = new BasicMLData(idealSize);
for (int i = 0; i < idealSize; i++)
{
double d = csv.GetDouble(index++);
ideal[i] = d;
}
}
IMLDataPair pair = new BasicMLDataPair(input, ideal);
result.Add(pair);
}
return result;
}
示例6: LoadCSVToDataSet
public static IMLDataSet LoadCSVToDataSet(FileInfo fileInfo, int inputCount, int outputCount, bool randomize = true, bool headers = true)
{
BasicMLDataSet result = new BasicMLDataSet();
CultureInfo CSVformat = new CultureInfo("en");
using (TextFieldParser parser = new TextFieldParser(fileInfo.FullName))
{
parser.TextFieldType = FieldType.Delimited;
parser.SetDelimiters(",");
if (headers)
parser.ReadFields();
while (!parser.EndOfData)
{
//Processing row
string[] fields = parser.ReadFields();
var input = new BasicMLData(inputCount);
for (int i = 0; i < inputCount; i++)
input[i] = double.Parse(fields[i], CSVformat);
var ideal = new BasicMLData(outputCount);
for (int i = 0; i < outputCount; i++)
ideal[i] = double.Parse(fields[i + inputCount], CSVformat);
result.Add(input, ideal);
}
}
var rand = new Random(DateTime.Now.Millisecond);
return (randomize ? new BasicMLDataSet(result.OrderBy(r => rand.Next()).ToList()) : new BasicMLDataSet(result));
}
示例7: Generate
/// <summary>
/// Generate a random training set.
/// </summary>
/// <param name="seed">The seed value to use, the same seed value will always produce
/// the same results.</param>
/// <param name="count">How many training items to generate.</param>
/// <param name="inputCount">How many input numbers.</param>
/// <param name="idealCount">How many ideal numbers.</param>
/// <param name="min">The minimum random number.</param>
/// <param name="max">The maximum random number.</param>
/// <returns>The random training set.</returns>
public static BasicMLDataSet Generate(long seed,
int count, int inputCount,
int idealCount, double min, double max)
{
var rand =
new LinearCongruentialGenerator(seed);
var result = new BasicMLDataSet();
for (int i = 0; i < count; i++)
{
var inputData = new BasicMLData(inputCount);
for (int j = 0; j < inputCount; j++)
{
inputData[j] = rand.Range(min, max);
}
var idealData = new BasicMLData(idealCount);
for (int j = 0; j < idealCount; j++)
{
idealData[j] = rand.Range(min, max);
}
var pair = new BasicMLDataPair(inputData,
idealData);
result.Add(pair);
}
return result;
}
示例8: CalculateScore
/// <inheritdoc />
public double CalculateScore(IMLMethod genome)
{
var prg = (EncogProgram) genome;
var pop = (PrgPopulation) prg.Population;
IMLData inputData = new BasicMLData(pop.Context.DefinedVariables.Count);
prg.Compute(inputData);
return 0;
}
示例9: TestBufferData
public void TestBufferData()
{
File.Delete(Filename);
var set = new BufferedMLDataSet(Filename);
set.BeginLoad(2, 1);
for (int i = 0; i < XOR.XORInput.Length; i++)
{
var input = new BasicMLData(XOR.XORInput[i]);
var ideal = new BasicMLData(XOR.XORIdeal[i]);
set.Add(input, ideal);
}
set.EndLoad();
XOR.TestXORDataSet(set);
}
示例10: CreateNoisyXORDataSet
public static IMLDataSet CreateNoisyXORDataSet(int count)
{
var result = new BasicMLDataSet();
for (int i = 0; i < count; i++)
{
for (int j = 0; j < 4; j++)
{
var inputData = new BasicMLData(XORInput[j]);
var idealData = new BasicMLData(XORIdeal[j]);
var pair = new BasicMLDataPair(inputData, idealData);
inputData[0] = inputData[0] + RangeRandomizer.Randomize(-0.1, 0.1);
inputData[1] = inputData[1] + RangeRandomizer.Randomize(-0.1, 0.1);
result.Add(pair);
}
}
return result;
}
示例11: Query
public IntPair Query(int resolution)
{
// first, create the input data
int index = 0;
BasicMLData inputData = new BasicMLData(resolution * resolution);
double pixelSize = 2.0 / resolution;
double orig = -1.0 + (pixelSize / 2.0);
double yReal = orig;
for (int y = 0; y < resolution; y++, yReal += pixelSize)
{
double xReal = orig;
for (int x = 0; x < resolution; x++, xReal += pixelSize)
{
inputData.Data[index] = this.test.GetPixel(xReal, yReal);
index++;
}
}
// second, query the network
output = ((NEATNetwork)this.phenotype).Compute(inputData);
// finally, process the output
minActivation = Double.PositiveInfinity;
maxActivation = Double.NegativeInfinity;
int maxIndex = 0;
for (int i = 0; i < output.Count; i++)
{
double d = output[i];
if (d > maxActivation)
{
maxActivation = d;
maxIndex = i;
}
else if (d < minActivation)
{
minActivation = d;
}
}
int yy = maxIndex / resolution;
int xx = maxIndex - (yy * resolution);
return new IntPair(xx, yy);
}
示例12: GenerateSingleDataRange
public static IMLDataSet GenerateSingleDataRange(EncogFunction task, double start, double stop, double step)
{
BasicMLDataSet result = new BasicMLDataSet();
double current = start;
while (current <= stop)
{
BasicMLData input = new BasicMLData(1);
input[0] = current;
BasicMLData ideal = new BasicMLData(1);
ideal[0] = task(current);
result.Add(input, ideal);
current += step;
}
return result;
}
示例13: ScorePilot
public int ScorePilot()
{
while (sim.Traveling)
{
var input = new BasicMLData(2);
input[0] = sim.DistanceToDestination;
input[1] = _hStats.Normalize(sim.Heading);
IMLData output = _network.Compute(input);
double f = output[0];
double l = output[1];
double r = output[2];
double rev = output[3];
var dirs = new Dictionary<CommandDirection, double>
{
{CommandDirection.MoveForward, f},
{CommandDirection.TurnLeft, l},
{CommandDirection.TurnRight, r},
{CommandDirection.MoveInReverse, rev}
};
KeyValuePair<CommandDirection, double> d = dirs.First(v => v.Value == 1.0);
CommandDirection thrust = d.Key;
sim.Turn(thrust);
lock (RobotContol.ConsoleLock)
{
if (_track)
{
sim.Telemetry();
switch (thrust)
{
default:
Thread.Sleep(50);
break;
}
}
}
}
return (sim.Score);
}
示例14: LevenbergMarquardtTraining
public LevenbergMarquardtTraining(BasicNetwork network, IMLDataSet training)
: base(TrainingImplementationType.Iterative)
{
if (2 != 0)
{
ValidateNetwork.ValidateMethodToData(network, training);
if (network.OutputCount != 1)
{
throw new TrainingError("Levenberg Marquardt requires an output layer with a single neuron.");
}
this.Training = training;
goto Label_0134;
}
Label_00A8:
this._xdadd8f92d75a3aba = new double[this._xe2982b936ae423cd];
this._x878c4eb3cef19a5a = new double[this._xe2982b936ae423cd];
this._x3cb63876dda4b74a = new double[this._xe2982b936ae423cd];
if (0xff == 0)
{
return;
}
BasicMLData input = new BasicMLData(this._xb12276308f0fa6d9.InputSize);
BasicMLData ideal = new BasicMLData(this._xb12276308f0fa6d9.IdealSize);
this._x61830ac74d65acc3 = new BasicMLDataPair(input, ideal);
if (-1 != 0)
{
return;
}
Label_0134:
this._xb12276308f0fa6d9 = this.Training;
this._x87a7fc6a72741c2e = network;
this._x8557b7ee760663f3 = (int) this._xb12276308f0fa6d9.Count;
this._xe2982b936ae423cd = this._x87a7fc6a72741c2e.Structure.CalculateSize();
this._x05fb16197e552de6 = new Matrix(this._xe2982b936ae423cd, this._xe2982b936ae423cd);
this._xc410e3804222557a = this._x05fb16197e552de6.Data;
this._x6ad505c7ef981b0e = 0.0;
this._xd7d571ecee49d1e4 = 1.0;
this._x3271cefb1a159639 = 0.1;
goto Label_00A8;
}
示例15: SOMColors
public SOMColors()
{
InitializeComponent();
network = CreateNetwork();
gaussian = new NeighborhoodRBF(RBFEnum.Gaussian, WIDTH, HEIGHT);
train = new BasicTrainSOM(network, 0.01, null, gaussian);
train.ForceWinner = false;
samples = new List<IMLData>();
for (int i = 0; i < 15; i++)
{
IMLData data = new BasicMLData(3);
data.Data[0] = RangeRandomizer.Randomize(-1, 1);
data.Data[1] = RangeRandomizer.Randomize(-1, 1);
data.Data[2] = RangeRandomizer.Randomize(-1, 1);
samples.Add(data);
}
train.SetAutoDecay(100, 0.8, 0.003, 30, 5);
}