本文整理汇总了C#中Emgu.CV.Structure.MCvTermCriteria类的典型用法代码示例。如果您正苦于以下问题:C# MCvTermCriteria类的具体用法?C# MCvTermCriteria怎么用?C# MCvTermCriteria使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
MCvTermCriteria类属于Emgu.CV.Structure命名空间,在下文中一共展示了MCvTermCriteria类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: EigenObjectRecognizer
/// <summary>
/// Create an object recognizer using the specific tranning data and parameters
/// </summary>
/// <param name="images">The images used for training, each of them should be the same size. It's recommended the images are histogram normalized</param>
/// <param name="labels">The labels corresponding to the images</param>
/// <param name="eigenDistanceThreshold">
/// The eigen distance threshold, (0, ~1000].
/// The smaller the number, the more likely an examined image will be treated as unrecognized object.
/// If the threshold is < 0, the recognizer will always treated the examined image as one of the known object.
/// </param>
/// <param name="termCrit">The criteria for recognizer training</param>
public EigenObjectRecognizer(Image<Gray, Byte>[] images, Guid[] labels, int cacheSize, double eigenDistanceThreshold, ref MCvTermCriteria termCrit)
{
Debug.Assert(images.Length == labels.Length, "The number of images should equals the number of labels");
Debug.Assert(eigenDistanceThreshold >= 0.0, "Eigen-distance threshold should always >= 0.0");
CalcEigenObjects(images, ref termCrit, out _eigenImages, out _avgImage);
/*
_avgImage.SerializationCompressionRatio = 9;
foreach (Image<Gray, Single> img in _eigenImages)
//Set the compression ration to best compression. The serialized object can therefore save spaces
img.SerializationCompressionRatio = 9;
*/
_eigenValues = Array.ConvertAll<Image<Gray, Byte>, Matrix<float>>(images,
delegate(Image<Gray, Byte> img)
{
return new Matrix<float>(ConstructEigenDecomposite(img, _eigenImages, _avgImage));
});
_labels = labels;
_eigenDistanceThreshold = eigenDistanceThreshold;
queueMaxCount = cacheSize;
}
示例2: LevMarqSparse
/*
/// <summary>
/// Create a LevMarqSparse solver
/// </summary>
public LevMarqSparse()
{
_ptr = CvInvoke.CvCreateLevMarqSparse();
}*/
/// <summary>
/// Useful function to do simple bundle adjustment tasks
/// </summary>
/// <param name="points">Positions of points in global coordinate system (input and output), values will be modified by bundle adjustment</param>
/// <param name="imagePoints">Projections of 3d points for every camera</param>
/// <param name="visibility">Visibility of 3d points for every camera</param>
/// <param name="cameraMatrix">Intrinsic matrices of all cameras (input and output), values will be modified by bundle adjustment</param>
/// <param name="R">rotation matrices of all cameras (input and output), values will be modified by bundle adjustment</param>
/// <param name="T">translation vector of all cameras (input and output), values will be modified by bundle adjustment</param>
/// <param name="distCoeffcients">distortion coefficients of all cameras (input and output), values will be modified by bundle adjustment</param>
/// <param name="termCrit">Termination criteria, a reasonable value will be (30, 1.0e-12) </param>
public static void BundleAdjust(
MCvPoint3D64f[] points, MCvPoint2D64f[][] imagePoints, int[][] visibility,
Matrix<double>[] cameraMatrix, Matrix<double>[] R, Matrix<double>[] T, Matrix<double>[] distCoeffcients, MCvTermCriteria termCrit)
{
using (Matrix<double> imagePointsMat = CvToolbox.GetMatrixFromPoints(imagePoints))
using (Matrix<int> visibilityMat = CvToolbox.GetMatrixFromArrays(visibility))
using (VectorOfMat cameraMatVec = new VectorOfMat())
using (VectorOfMat rMatVec = new VectorOfMat())
using (VectorOfMat tMatVec = new VectorOfMat())
using (VectorOfMat distorMatVec = new VectorOfMat())
{
cameraMatVec.Push(cameraMatrix);
rMatVec.Push(R);
tMatVec.Push(T);
distorMatVec.Push(distCoeffcients);
GCHandle handlePoints = GCHandle.Alloc(points, GCHandleType.Pinned);
CvInvoke.CvLevMarqSparseAdjustBundle(
cameraMatrix.Length,
points.Length, handlePoints.AddrOfPinnedObject(),
imagePointsMat, visibilityMat, cameraMatVec, rMatVec, tMatVec, distorMatVec, ref termCrit);
handlePoints.Free();
}
}
示例3: Lines
public static List<List<Point>> Lines(List<Point> input, int lanes = 2)
{
float[,] samples = new float[input.Count, 2];
int i = 0;
foreach (var p in input)
{
samples[i, 0] = p.X;
samples[i, 1] = p.Y;
++i;
}
MCvTermCriteria term = new MCvTermCriteria();
Matrix<float> samplesMatrix = new Matrix<float>(samples);
Matrix<Int32> labels = new Matrix<Int32>(input.Count, 1);
CvInvoke.cvKMeans2(samplesMatrix, 2, labels, term, lanes, IntPtr.Zero, Emgu.CV.CvEnum.KMeansInitType.RandomCenters, IntPtr.Zero, IntPtr.Zero);
List<Point> leftLane = new List<Point>(input.Count);
List<Point> rightLane = new List<Point>(input.Count);
for (i = 0; i < input.Count; ++i)
{
if (labels[i, 0] == 0)
leftLane.Add(input[i]);
else
rightLane.Add(input[2]);
}
return new List<List<Point>> { leftLane, rightLane };
}
示例4: Calibration
public Calibration(Camera mainCamera)
{
_mainCamera = mainCamera;
_termCriteria = new MCvTermCriteria();
_flags = CALIB_TYPE.CV_CALIB_USE_INTRINSIC_GUESS | CALIB_TYPE.CV_CALIB_FIX_K1 | CALIB_TYPE.CV_CALIB_FIX_K2 | CALIB_TYPE.CV_CALIB_FIX_K3 | CALIB_TYPE.CV_CALIB_FIX_K4 | CALIB_TYPE.CV_CALIB_FIX_K5 | CALIB_TYPE.CV_CALIB_ZERO_TANGENT_DIST;
_size = new Size(Screen.width, Screen.height);
}
示例5: EMParams
//private IntPtr[] _covsPtr;
//private GCHandle _covsPtrHandle;
/// <summary>
/// Create EM parameters with default value
/// </summary>
public EMParams()
{
Nclusters = 10;
CovMatType = Emgu.CV.ML.MlEnum.EM_COVARIAN_MATRIX_TYPE.COV_MAT_DIAGONAL;
StartStep = Emgu.CV.ML.MlEnum.EM_INIT_STEP_TYPE.START_AUTO_STEP;
_termCrit = new MCvTermCriteria(100, 1.0e-6);
}
示例6: Two_Means_Clustering
/// <summary>
/// Running k-means algorithm with k-means++ initial algorithm for k = 2.
/// Can be used to find right and left lane boundary.
/// </summary>
/// <param name="input">Input points</param>
/// <param name="a">First lane</param>
/// <param name="b">Second lane</param>
public static void Two_Means_Clustering(List<Point> input, ref List<Point> first, ref List<Point> second, int attempts = 3)
{
if (input.Count < 7)
return;
// formatting input data
float[,] samples = new float[input.Count, 2];
int i = 0;
foreach (var p in input)
{
samples[i, 0] = p.X;
samples[i, 1] = p.Y;
++i;
}
MCvTermCriteria term = new MCvTermCriteria();
Matrix<float> samplesMatrix = new Matrix<float>(samples);
Matrix<Int32> labels = new Matrix<Int32>(input.Count, 1);
CvInvoke.cvKMeans2(samplesMatrix, 2, labels, term, attempts, IntPtr.Zero, KMeansInitType.RandomCenters, IntPtr.Zero, IntPtr.Zero);
first.Clear();
second.Clear();
for (i = 0; i < input.Count; ++i)
{
if (labels[i, 0] == 0)
first.Add(input[i]);
else
second.Add(input[i]);
}
}
示例7: MeanShift
/// <summary>
/// Iterates to find the object center given its back projection and initial position of search window. The iterations are made until the search window center moves by less than the given value and/or until the function has done the maximum number of iterations.
/// </summary>
/// <param name="probImage">Back projection of object histogram</param>
/// <param name="window">Initial search window</param>
/// <param name="criteria">Criteria applied to determine when the window search should be finished. </param>
/// <returns>The number of iterations made</returns>
public static int MeanShift(
IInputArray probImage,
ref Rectangle window,
MCvTermCriteria criteria)
{
using (InputArray iaProbImage = probImage.GetInputArray())
return cveMeanShift(iaProbImage, ref window, ref criteria);
}
示例8: cvCalcOpticalFlowHS
public static extern void cvCalcOpticalFlowHS(
IntPtr prev,
IntPtr curr,
int usePrevious,
IntPtr velx,
IntPtr vely,
double lambda,
MCvTermCriteria criteria);
示例9: TrainRecognizer
//-------------------------------------------------------------------------------------//
//<<<<<----------------FUNCTIONS USED TO TRAIN RECOGNIZER ON TRAINING SET----------->>>>
//-------------------------------------------------------------------------------------//
/// <summary>
/// Trains recognizer on fetched face-label pairs and saves the trained data to recognition variables
/// </summary>
public void TrainRecognizer()
{
MCvTermCriteria termCrit = new MCvTermCriteria(iMaxItereations, dEPS);
ImageInDatabase dbTrainingSet = new ImageInDatabase();
// This will fill the training images array AND labels array
dbTrainingSet.LoadCompleteTrainingSet();
recognizer = new EigenObjectRecognizer(dbTrainingSet.m_trainingImages, dbTrainingSet.m_TrainingLabels, dDistTreshHold, ref termCrit);
}
示例10: Apply
//public static KDetector kdetector;
public string Apply(int k, string fn, string outImagePath)
{
Image<Bgr, float> src = new Image<Bgr, float>(fn);
Matrix<float> samples = new Matrix<float>(src.Rows * src.Cols, 1, 3);
Matrix<int> finalClusters = new Matrix<int>(src.Rows * src.Cols, 1);
//Convert image to a sample matrix that its rows equal to width*height of image and its
//column equals to 3 feature (R/G/B) or (H/L/S)
for (int y = 0; y < src.Rows; y++)
{
for (int x = 0; x < src.Cols; x++)
{
samples.Data[y + x * src.Rows, 0] = (float)src[y, x].Blue;
samples.Data[y + x * src.Rows, 1] = (float)src[y, x].Green;
samples.Data[y + x * src.Rows, 2] = (float)src[y, x].Red;
}
}
MCvTermCriteria term = new MCvTermCriteria(10000, 0.0001);
term.type = TERMCRIT.CV_TERMCRIT_ITER | TERMCRIT.CV_TERMCRIT_EPS;
int clusterCount = k;
int attempts = 10;
//center matrix after call k-means function holds the cluster value
Matrix<float> centers;
centers = new Matrix<float>(clusterCount, 3);
int mm = CvInvoke.cvKMeans2(samples, clusterCount, finalClusters, term, attempts, IntPtr.Zero, KMeansInitType.PPCenters, centers, IntPtr.Zero);
Image<Bgr, float> new_image = new Image<Bgr, float>(src.Size);
//find color of cluster values
Bgr[] clusterColors = new Bgr[clusterCount];
for (int i = 0; i < clusterCount; i++)
{
Bgr b = new Bgr(centers[i, 0], centers[i, 1], centers[i, 2]);
clusterColors[i] = b;
}
//Draw a image based on cluster color
for (int y = 0; y < src.Rows; y++)
{
for (int x = 0; x < src.Cols; x++)
{
PointF p = new PointF(x, y);
new_image.Draw(new CircleF(p, 1.0f), clusterColors[finalClusters[y + x * src.Rows, 0]], 1);
}
}
new_image.Save(outImagePath);
return outImagePath;
}
示例11: cvSnakeImage
public static extern void cvSnakeImage(
IntPtr image,
IntPtr points,
int length,
[MarshalAs(UnmanagedType.LPArray)] float[] alpha,
[MarshalAs(UnmanagedType.LPArray)] float[] beta,
[MarshalAs(UnmanagedType.LPArray)] float[] gamma,
int coeffUsage,
Size win,
MCvTermCriteria criteria,
int calcGradient);
示例12: InitEigenObjectRecognizer
private void InitEigenObjectRecognizer() {
if (trainedImages.Count <= 0) { return; }
initEigen = true;
// TermCriteria for face recognition with numbers of trained images like maxIteration
termCrit = new MCvTermCriteria(trainedImages.Count, 0.001);
// Eigen face recognizer
recognizer = new EigenObjectRecognizer(trainedImages.ToArray(), trainedLabels.ToArray(), 5000, ref termCrit);
initEigen = false;
}
示例13: CamShift
/// <summary>
/// Implements CAMSHIFT object tracking algorithm ([Bradski98]). First, it finds an object center using cvMeanShift and, after that, calculates the object size and orientation.
/// </summary>
/// <param name="probImage">Back projection of object histogram </param>
/// <param name="window">Initial search window</param>
/// <param name="criteria">Criteria applied to determine when the window search should be finished</param>
/// <returns>Circumscribed box for the object, contains object size and orientation</returns>
public static RotatedRect CamShift(
IInputArray probImage,
ref Rectangle window,
MCvTermCriteria criteria)
{
RotatedRect box = new RotatedRect();
using (InputArray iaProbImage = probImage.GetInputArray())
{
cveCamShift(iaProbImage, ref window, ref criteria, ref box);
}
return box;
}
示例14: PyrLK
/// <summary>
/// Calculates optical flow for a sparse feature set using iterative Lucas-Kanade method in pyramids
/// </summary>
/// <param name="prev">First frame, at time t</param>
/// <param name="curr">Second frame, at time t + dt </param>
/// <param name="prevFeatures">Array of points for which the flow needs to be found</param>
/// <param name="winSize">Size of the search window of each pyramid level</param>
/// <param name="level">Maximal pyramid level number. If 0 , pyramids are not used (single level), if 1 , two levels are used, etc</param>
/// <param name="criteria">Specifies when the iteration process of finding the flow for each point on each pyramid level should be stopped</param>
/// <param name="currFeatures">Array of 2D points containing calculated new positions of input features in the second image</param>
/// <param name="status">Array. Every element of the array is set to 1 if the flow for the corresponding feature has been found, 0 otherwise</param>
/// <param name="trackError">Array of double numbers containing difference between patches around the original and moved points</param>
public static void PyrLK(
Image<Gray, Byte> prev,
Image<Gray, Byte> curr,
PointF[] prevFeatures,
Size winSize,
int level,
MCvTermCriteria criteria,
out PointF[] currFeatures,
out Byte[] status,
out float[] trackError)
{
PyrLK(prev, curr, null, null, prevFeatures, winSize, level, criteria, Emgu.CV.CvEnum.LKFLOW_TYPE.DEFAULT, out currFeatures, out status, out trackError);
}
示例15: EigenCardDetector
public EigenCardDetector(string foldername)
{
List<FileInfo> files = new List<FileInfo>(new DirectoryInfo(foldername).GetFiles());
List<Image<Gray, byte>> images = new List<Image<Gray, byte>>(files.Count);
foreach (FileInfo info in files)
{
Bitmap bit = new Bitmap(info.FullName);
images.Add(new Image<Gray, byte>(bit));
}
MCvTermCriteria crit = new MCvTermCriteria(0.05);
recog = new EigenObjectRecognizer(images.ToArray(), ref crit);
}