本文整理汇总了C#中ClassicalSharp.Game.CanPick方法的典型用法代码示例。如果您正苦于以下问题:C# Game.CanPick方法的具体用法?C# Game.CanPick怎么用?C# Game.CanPick使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ClassicalSharp.Game
的用法示例。
在下文中一共展示了Game.CanPick方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CalculatePickedBlock
/// <summary> Determines the picked block based on the given origin and direction vector.<br/>
/// Marks pickedPos as invalid if a block could not be found due to going outside map boundaries
/// or not being able to find a suitable candiate within the given reach distance. </summary>
public static void CalculatePickedBlock( Game game, Vector3 origin, Vector3 dir, float reach, PickedPos pickedPos )
{
tracer.SetRayData( origin, dir );
World map = game.World;
BlockInfo info = game.BlockInfo;
float reachSquared = reach * reach;
int iterations = 0;
Vector3I pOrigin = Vector3I.Floor( origin );
while( iterations < 10000 ) {
int x = tracer.X, y = tracer.Y, z = tracer.Z;
byte block = GetBlock( map, x, y, z, pOrigin );
Vector3 min = new Vector3( x, y, z ) + info.MinBB[block];
Vector3 max = new Vector3( x, y, z ) + info.MaxBB[block];
float dx = Math.Min( Math.Abs( origin.X - min.X ), Math.Abs( origin.X - max.X ) );
float dy = Math.Min( Math.Abs( origin.Y - min.Y ), Math.Abs( origin.Y - max.Y ) );
float dz = Math.Min( Math.Abs( origin.Z - min.Z ), Math.Abs( origin.Z - max.Z ) );
if( dx * dx + dy * dy + dz * dz > reachSquared ) {
pickedPos.SetAsInvalid(); return;
}
if( game.CanPick( block ) ) {
// This cell falls on the path of the ray. Now perform an additional bounding box test,
// since some blocks do not occupy a whole cell.
float t0, t1;
if( Intersection.RayIntersectsBox( origin, dir, min, max, out t0, out t1 ) ) {
Vector3 intersect = origin + dir * t0;
pickedPos.SetAsValid( x, y, z, min, max, block, intersect );
return;
}
}
tracer.Step();
iterations++;
}
throw new InvalidOperationException( "did over 10000 iterations in CalculatePickedBlock(). " +
"Something has gone wrong. (dir: " + dir + ")" );
}
示例2: GetPickedBlockPos
// http://www.xnawiki.com/index.php/Voxel_traversal
public static void GetPickedBlockPos( Game window, Vector3 origin, Vector3 dir, float reach, PickedPos pickedPos )
{
// Implementation is based on:
// "A Fast Voxel Traversal Algorithm for Ray Tracing"
// John Amanatides, Andrew Woo
// http://www.cse.yorku.ca/~amana/research/grid.pdf
// http://www.devmaster.net/articles/raytracing_series/A%20faster%20voxel%20traversal%20algorithm%20for%20ray%20tracing.pdf
// NOTES:
// * This code assumes that the ray's position and direction are in 'cell coordinates', which means
// that one unit equals one cell in all directions.
// * When the ray doesn't start within the voxel grid, calculate the first position at which the
// ray could enter the grid. If it never enters the grid, there is nothing more to do here.
// * Also, it is important to test when the ray exits the voxel grid when the grid isn't infinite.
// * The Point3D structure is a simple structure having three integer fields (X, Y and Z).
// The cell in which the ray starts.
Vector3I start = Vector3I.Floor( origin ); // Rounds the position's X, Y and Z down to the nearest integer values.
int x = start.X;
int y = start.Y;
int z = start.Z;
// Determine which way we go.
int stepX = Math.Sign( dir.X );
int stepY = Math.Sign( dir.Y );
int stepZ = Math.Sign( dir.Z );
// Calculate cell boundaries. When the step (i.e. direction sign) is positive,
// the next boundary is AFTER our current position, meaning that we have to add 1.
// Otherwise, it is BEFORE our current position, in which case we add nothing.
Vector3I cellBoundary = new Vector3I(
x + ( stepX > 0 ? 1 : 0 ),
y + ( stepY > 0 ? 1 : 0 ),
z + ( stepZ > 0 ? 1 : 0 ) );
// NOTE: For the following calculations, the result will be Single.PositiveInfinity
// when ray.Direction.X, Y or Z equals zero, which is OK. However, when the left-hand
// value of the division also equals zero, the result is Single.NaN, which is not OK.
// Determine how far we can travel along the ray before we hit a voxel boundary.
Vector3 tMax = new Vector3(
( cellBoundary.X - origin.X ) / dir.X, // Boundary is a plane on the YZ axis.
( cellBoundary.Y - origin.Y ) / dir.Y, // Boundary is a plane on the XZ axis.
( cellBoundary.Z - origin.Z ) / dir.Z ); // Boundary is a plane on the XY axis.
if( Single.IsNaN( tMax.X ) || Single.IsInfinity( tMax.X ) ) tMax.X = Single.PositiveInfinity;
if( Single.IsNaN( tMax.Y ) || Single.IsInfinity( tMax.Y ) ) tMax.Y = Single.PositiveInfinity;
if( Single.IsNaN( tMax.Z ) || Single.IsInfinity( tMax.Z ) ) tMax.Z = Single.PositiveInfinity;
// Determine how far we must travel along the ray before we have crossed a gridcell.
Vector3 tDelta = new Vector3(
stepX / dir.X, // Crossing the width of a cell.
stepY / dir.Y, // Crossing the height of a cell.
stepZ / dir.Z ); // Crossing the depth of a cell.
if( Single.IsNaN( tDelta.X ) ) tDelta.X = Single.PositiveInfinity;
if( Single.IsNaN( tDelta.Y ) ) tDelta.Y = Single.PositiveInfinity;
if( Single.IsNaN( tDelta.Z ) ) tDelta.Z = Single.PositiveInfinity;
Map map = window.Map;
BlockInfo info = window.BlockInfo;
float reachSquared = reach * reach;
int iterations = 0;
// For each step, determine which distance to the next voxel boundary is lowest (i.e.
// which voxel boundary is nearest) and walk that way.
while( iterations < 10000 ) {
byte block = GetBlock( map, x, y, z, origin );
Vector3 min = new Vector3( x, y, z ) + info.MinBB[block];
Vector3 max = new Vector3( x, y, z ) + info.MaxBB[block];
float dx = Math.Min( Math.Abs( origin.X - min.X ), Math.Abs( origin.X - max.X ) );
float dy = Math.Min( Math.Abs( origin.Y - min.Y ), Math.Abs( origin.Y - max.Y ) );
float dz = Math.Min( Math.Abs( origin.Z - min.Z ), Math.Abs( origin.Z - max.Z ) );
if( dx * dx + dy * dy + dz * dz > reachSquared ) {
pickedPos.SetAsInvalid();
return;
}
if( window.CanPick( block ) ) {
// This cell falls on the path of the ray. Now perform an additional bounding box test,
// since some blocks do not occupy a whole cell.
float t0, t1;
if( Intersection.RayIntersectsBox( origin, dir, min, max, out t0, out t1 ) ) {
Vector3 intersect = origin + dir * t0;
pickedPos.SetAsValid( min, max, block, intersect );
return;
}
}
if( tMax.X < tMax.Y && tMax.X < tMax.Z ) {
// tMax.X is the lowest, an YZ cell boundary plane is nearest.
x += stepX;
tMax.X += tDelta.X;
} else if( tMax.Y < tMax.Z ) {
// tMax.Y is the lowest, an XZ cell boundary plane is nearest.
y += stepY;
tMax.Y += tDelta.Y;
} else {
// tMax.Z is the lowest, an XY cell boundary plane is nearest.
//.........这里部分代码省略.........