当前位置: 首页>>代码示例>>C#>>正文


C# Game.CanPick方法代码示例

本文整理汇总了C#中ClassicalSharp.Game.CanPick方法的典型用法代码示例。如果您正苦于以下问题:C# Game.CanPick方法的具体用法?C# Game.CanPick怎么用?C# Game.CanPick使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ClassicalSharp.Game的用法示例。


在下文中一共展示了Game.CanPick方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: CalculatePickedBlock

        /// <summary> Determines the picked block based on the given origin and direction vector.<br/>
        /// Marks pickedPos as invalid if a block could not be found due to going outside map boundaries
        /// or not being able to find a suitable candiate within the given reach distance. </summary>
        public static void CalculatePickedBlock( Game game, Vector3 origin, Vector3 dir, float reach, PickedPos pickedPos )
        {
            tracer.SetRayData( origin, dir );
            World map = game.World;
            BlockInfo info = game.BlockInfo;
            float reachSquared = reach * reach;
            int iterations = 0;
            Vector3I pOrigin = Vector3I.Floor( origin );

            while( iterations < 10000 ) {
                int x = tracer.X, y = tracer.Y, z = tracer.Z;
                byte block = GetBlock( map, x, y, z, pOrigin );
                Vector3 min = new Vector3( x, y, z ) + info.MinBB[block];
                Vector3 max = new Vector3( x, y, z ) + info.MaxBB[block];

                float dx = Math.Min( Math.Abs( origin.X - min.X ), Math.Abs( origin.X - max.X ) );
                float dy = Math.Min( Math.Abs( origin.Y - min.Y ), Math.Abs( origin.Y - max.Y ) );
                float dz = Math.Min( Math.Abs( origin.Z - min.Z ), Math.Abs( origin.Z - max.Z ) );

                if( dx * dx + dy * dy + dz * dz > reachSquared ) {
                    pickedPos.SetAsInvalid(); return;
                }

                if( game.CanPick( block ) ) {
                    // This cell falls on the path of the ray. Now perform an additional bounding box test,
                    // since some blocks do not occupy a whole cell.
                    float t0, t1;
                    if( Intersection.RayIntersectsBox( origin, dir, min, max, out t0, out t1 ) ) {
                        Vector3 intersect = origin + dir * t0;
                        pickedPos.SetAsValid( x, y, z, min, max, block, intersect );
                        return;
                    }
                }
                tracer.Step();
                iterations++;
            }
            throw new InvalidOperationException( "did over 10000 iterations in CalculatePickedBlock(). " +
                                                "Something has gone wrong. (dir: " + dir + ")" );
        }
开发者ID:Retatta,项目名称:ClassicalSharp,代码行数:42,代码来源:Picking.cs

示例2: GetPickedBlockPos

        // http://www.xnawiki.com/index.php/Voxel_traversal
        public static void GetPickedBlockPos( Game window, Vector3 origin, Vector3 dir, float reach, PickedPos pickedPos )
        {
            // Implementation is based on:
            // "A Fast Voxel Traversal Algorithm for Ray Tracing"
            // John Amanatides, Andrew Woo
            // http://www.cse.yorku.ca/~amana/research/grid.pdf
            // http://www.devmaster.net/articles/raytracing_series/A%20faster%20voxel%20traversal%20algorithm%20for%20ray%20tracing.pdf

            // NOTES:
            // * This code assumes that the ray's position and direction are in 'cell coordinates', which means
            //   that one unit equals one cell in all directions.
            // * When the ray doesn't start within the voxel grid, calculate the first position at which the
            //   ray could enter the grid. If it never enters the grid, there is nothing more to do here.
            // * Also, it is important to test when the ray exits the voxel grid when the grid isn't infinite.
            // * The Point3D structure is a simple structure having three integer fields (X, Y and Z).

            // The cell in which the ray starts.
            Vector3I start = Vector3I.Floor( origin ); // Rounds the position's X, Y and Z down to the nearest integer values.
            int x = start.X;
            int y = start.Y;
            int z = start.Z;

            // Determine which way we go.
            int stepX = Math.Sign( dir.X );
            int stepY = Math.Sign( dir.Y );
            int stepZ = Math.Sign( dir.Z );

            // Calculate cell boundaries. When the step (i.e. direction sign) is positive,
            // the next boundary is AFTER our current position, meaning that we have to add 1.
            // Otherwise, it is BEFORE our current position, in which case we add nothing.
            Vector3I cellBoundary = new Vector3I(
                x + ( stepX > 0 ? 1 : 0 ),
                y + ( stepY > 0 ? 1 : 0 ),
                z + ( stepZ > 0 ? 1 : 0 ) );

            // NOTE: For the following calculations, the result will be Single.PositiveInfinity
            // when ray.Direction.X, Y or Z equals zero, which is OK. However, when the left-hand
            // value of the division also equals zero, the result is Single.NaN, which is not OK.

            // Determine how far we can travel along the ray before we hit a voxel boundary.
            Vector3 tMax = new Vector3(
                ( cellBoundary.X - origin.X ) / dir.X,    // Boundary is a plane on the YZ axis.
                ( cellBoundary.Y - origin.Y ) / dir.Y,    // Boundary is a plane on the XZ axis.
                ( cellBoundary.Z - origin.Z ) / dir.Z );  // Boundary is a plane on the XY axis.
            if( Single.IsNaN( tMax.X ) || Single.IsInfinity( tMax.X ) ) tMax.X = Single.PositiveInfinity;
            if( Single.IsNaN( tMax.Y ) || Single.IsInfinity( tMax.Y ) ) tMax.Y = Single.PositiveInfinity;
            if( Single.IsNaN( tMax.Z ) || Single.IsInfinity( tMax.Z ) ) tMax.Z = Single.PositiveInfinity;

            // Determine how far we must travel along the ray before we have crossed a gridcell.
            Vector3 tDelta = new Vector3(
                stepX / dir.X,     // Crossing the width of a cell.
                stepY / dir.Y,     // Crossing the height of a cell.
                stepZ / dir.Z );   // Crossing the depth of a cell.
            if( Single.IsNaN( tDelta.X ) ) tDelta.X = Single.PositiveInfinity;
            if( Single.IsNaN( tDelta.Y ) ) tDelta.Y = Single.PositiveInfinity;
            if( Single.IsNaN( tDelta.Z ) ) tDelta.Z = Single.PositiveInfinity;

            Map map = window.Map;
            BlockInfo info = window.BlockInfo;
            float reachSquared = reach * reach;
            int iterations = 0;

            // For each step, determine which distance to the next voxel boundary is lowest (i.e.
            // which voxel boundary is nearest) and walk that way.
            while( iterations < 10000 ) {
                byte block = GetBlock( map, x, y, z, origin );
                Vector3 min = new Vector3( x, y, z ) + info.MinBB[block];
                Vector3 max = new Vector3( x, y, z ) + info.MaxBB[block];

                float dx = Math.Min( Math.Abs( origin.X - min.X ), Math.Abs( origin.X - max.X ) );
                float dy = Math.Min( Math.Abs( origin.Y - min.Y ), Math.Abs( origin.Y - max.Y ) );
                float dz = Math.Min( Math.Abs( origin.Z - min.Z ), Math.Abs( origin.Z - max.Z ) );

                if( dx * dx + dy * dy + dz * dz > reachSquared ) {
                    pickedPos.SetAsInvalid();
                    return;
                }

                if( window.CanPick( block ) ) {
                    // This cell falls on the path of the ray. Now perform an additional bounding box test,
                    // since some blocks do not occupy a whole cell.
                    float t0, t1;
                    if( Intersection.RayIntersectsBox( origin, dir, min, max, out t0, out t1 ) ) {
                        Vector3 intersect = origin + dir * t0;
                        pickedPos.SetAsValid( min, max, block, intersect );
                        return;
                    }
                }

                if( tMax.X < tMax.Y && tMax.X < tMax.Z ) {
                    // tMax.X is the lowest, an YZ cell boundary plane is nearest.
                    x += stepX;
                    tMax.X += tDelta.X;
                } else if( tMax.Y < tMax.Z ) {
                    // tMax.Y is the lowest, an XZ cell boundary plane is nearest.
                    y += stepY;
                    tMax.Y += tDelta.Y;
                } else {
                    // tMax.Z is the lowest, an XY cell boundary plane is nearest.
//.........这里部分代码省略.........
开发者ID:Cheesse,项目名称:ClassicalSharp,代码行数:101,代码来源:Picking.cs


注:本文中的ClassicalSharp.Game.CanPick方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。