本文整理汇总了C#中Altaxo.Calc.LinearAlgebra.ComplexDoubleVector类的典型用法代码示例。如果您正苦于以下问题:C# ComplexDoubleVector类的具体用法?C# ComplexDoubleVector怎么用?C# ComplexDoubleVector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
ComplexDoubleVector类属于Altaxo.Calc.LinearAlgebra命名空间,在下文中一共展示了ComplexDoubleVector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CtorDimensions
public void CtorDimensions()
{
ComplexDoubleVector test = new ComplexDoubleVector(2);
Assert.AreEqual(test.Length, 2);
Assert.AreEqual(test[0],new Complex(0));
Assert.AreEqual(test[1],new Complex(0));
}
示例2: CtorInitialValues
public void CtorInitialValues()
{
ComplexDoubleVector test = new ComplexDoubleVector(2, new Complex(1,-1));
Assert.AreEqual(test.Length, 2);
Assert.AreEqual(test[0],new Complex(1,-1));
Assert.AreEqual(test[1],new Complex(1,-1));
}
示例3: InternalCompute
/// <summary>Performs the QR factorization.</summary>
protected override void InternalCompute()
{
int m = matrix.Rows;
int n = matrix.Columns;
#if MANAGED
int minmn = m < n ? m : n;
r_ = new ComplexDoubleMatrix(matrix); // create a copy
ComplexDoubleVector[] u = new ComplexDoubleVector[minmn];
for (int i = 0; i < minmn; i++)
{
u[i] = Householder.GenerateColumn(r_, i, m - 1, i);
Householder.UA(u[i], r_, i, m - 1, i + 1, n - 1);
}
q_ = ComplexDoubleMatrix.CreateIdentity(m);
for (int i = minmn - 1; i >= 0; i--)
{
Householder.UA(u[i], q_, i, m - 1, i, m - 1);
}
#else
qr = ComplexDoubleMatrix.ToLinearComplexArray(matrix);
jpvt = new int[n];
jpvt[0] = 1;
Lapack.Geqp3.Compute(m, n, qr, m, jpvt, out tau);
r_ = new ComplexDoubleMatrix(m, n);
// Populate R
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i <= j) {
r_.data[j * m + i] = qr[(jpvt[j]-1) * m + i];
}
else {
r_.data[j * m + i] = Complex.Zero;
}
}
}
q_ = new ComplexDoubleMatrix(m, m);
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
if (j < n)
q_.data[j * m + i] = qr[j * m + i];
else
q_.data[j * m + i] = Complex.Zero;
}
}
if( m < n ){
Lapack.Ungqr.Compute(m, m, m, q_.data, m, tau);
} else{
Lapack.Ungqr.Compute(m, m, n, q_.data, m, tau);
}
#endif
for (int i = 0; i < m; i++)
{
if (q_[i, i] == 0)
isFullRank = false;
}
}
示例4: CurrentException2
public void CurrentException2()
{
ComplexDoubleVector test = new ComplexDoubleVector(new Complex[2] { 1, 2 });
IEnumerator enumerator = test.GetEnumerator();
enumerator.MoveNext();
enumerator.MoveNext();
enumerator.MoveNext();
object value = enumerator.Current;
}
示例5: CtorArray
public void CtorArray()
{
double[] testvector = new double[2]{0,1};
ComplexDoubleVector test = new ComplexDoubleVector(testvector);
Assert.AreEqual(test.Length,testvector.Length);
Assert.AreEqual(test[0],new Complex(testvector[0]));
Assert.AreEqual(test[1],new Complex(testvector[1]));
}
示例6: GenerateColumn
public static ComplexDoubleVector GenerateColumn(IComplexDoubleMatrix A, int r1, int r2, int c)
{
int ru = r2 - r1 + 1;
ComplexDoubleVector u = new ComplexDoubleVector(r2 - r1 + 1);
for (int i = r1; i <= r2; i++)
{
u[i - r1] = A[i, c];
A[i, c] = Complex.Zero;
}
double norm = u.GetNorm();
if (r1 == r2 || norm == 0)
{
A[r1, c] = new Complex(-u[0]);
u[0] = System.Math.Sqrt(2);
return u;
}
Complex scale = new Complex(1 / norm, 0);
Complex t = Complex.Zero;
Complex t1 = Complex.Zero;
if (u[0].Real != 0 || u[0].Imag != 0)
{
t = u[0];
t1 = ComplexMath.Conjugate(u[0]);
t = ComplexMath.Absolute(t);
t = t1 / t;
scale = scale * t;
}
A[r1, c] = -Complex.One / scale;
for (int i = 0; i < ru; i++)
{
u[i] = u[i] * scale;
}
u[0] = new Complex(u[0].Real + 1, 0);
double s = System.Math.Sqrt(1 / u[0].Real);
for (int i = 0; i < ru; i++)
{
u[i] = new Complex(s * u[i].Real, s * u[i].Imag);
}
return u;
}
示例7: Current
public void Current()
{
ComplexDoubleVector test = new ComplexDoubleVector(new Complex[2] { 1, 2 });
IEnumerator enumerator = test.GetEnumerator();
bool movenextresult;
movenextresult = enumerator.MoveNext();
Assert.IsTrue(movenextresult);
Assert.AreEqual(enumerator.Current, test[0]);
movenextresult = enumerator.MoveNext();
Assert.IsTrue(movenextresult);
Assert.AreEqual(enumerator.Current, test[1]);
movenextresult = enumerator.MoveNext();
Assert.IsFalse(movenextresult);
}
示例8: ICollection
public void ICollection()
{
ComplexDoubleVector a = new ComplexDoubleVector(new Complex[4]{0,1,2,3});
Complex[] b = new Complex[5];
Assert.AreEqual(a.Count,a.Length);
a.CopyTo(b,1);
Assert.AreEqual(b[0],(Complex)0);
Assert.AreEqual(b[1],(Complex)0);
Assert.AreEqual(b[2],(Complex)1);
Assert.AreEqual(b[3],(Complex)2);
Assert.AreEqual(b[4],(Complex)3);
}
示例9: GetEnumerator
public void GetEnumerator()
{
ComplexDoubleVector a = new ComplexDoubleVector(new Complex[4]{0,1,2,3});
IEnumerator dve = a.GetEnumerator();
Complex b;
bool c;
c = dve.MoveNext();
b = (Complex)dve.Current;
Assert.AreEqual(c,true);
Assert.AreEqual(b,(Complex)0);
c = dve.MoveNext();
b = (Complex)dve.Current;
Assert.AreEqual(c,true);
Assert.AreEqual(b,(Complex)1);
c = dve.MoveNext();
b = (Complex)dve.Current;
Assert.AreEqual(c,true);
Assert.AreEqual(b,(Complex)2);
c = dve.MoveNext();
b = (Complex)dve.Current;
Assert.AreEqual(c,true);
Assert.AreEqual(b,(Complex)3);
c = dve.MoveNext();
Assert.AreEqual(c,false);
}
示例10: Clone
public void Clone()
{
ComplexDoubleVector a = new ComplexDoubleVector(new double[4]{0,1,2,3});
ComplexDoubleVector b = a.Clone();
Assert.AreEqual(a[0],b[0]);
Assert.AreEqual(a[1],b[1]);
Assert.AreEqual(a[2],b[2]);
Assert.AreEqual(a[3],b[3]);
a=a*2;
Assert.AreEqual(a[0],b[0]*2);
Assert.AreEqual(a[1],b[1]*2);
Assert.AreEqual(a[2],b[2]*2);
Assert.AreEqual(a[3],b[3]*2);
}
示例11: GetEnumeratorException
public void GetEnumeratorException()
{
ComplexDoubleVector a = new ComplexDoubleVector(new Complex[4]{0,1,2,3});
IEnumerator dve = a.GetEnumerator();
Complex b = (Complex)dve.Current;
}
示例12: GetSum
public void GetSum()
{
ComplexDoubleVector a = new ComplexDoubleVector(new double[4]{0,1,2,3});
ComplexDoubleVector b = new ComplexDoubleVector(new double[4]{4,5,6,7});
Assert.AreEqual(a.GetSum(),(Complex)6);
Assert.AreEqual(a.GetSumMagnitudes(),6);
Assert.AreEqual(b.GetSum(),(Complex)22);
Assert.AreEqual(b.GetSumMagnitudes(),22);
}
示例13: Divide
public void Divide()
{
ComplexDoubleVector a = new ComplexDoubleVector(new double[4]{0,1,2,3});
ComplexDoubleVector c = new ComplexDoubleVector(a);
ComplexDoubleVector d = new ComplexDoubleVector(a);
double scal = -4;
c = a/scal;
d = ComplexDoubleVector.Divide(a,scal);
Assert.AreEqual(c[0],a[0]/scal);
Assert.AreEqual(c[1],a[1]/scal);
Assert.AreEqual(c[2],a[2]/scal);
Assert.AreEqual(c[3],a[3]/scal);
Assert.AreEqual(d[0],a[0]/scal);
Assert.AreEqual(d[1],a[1]/scal);
Assert.AreEqual(d[2],a[2]/scal);
Assert.AreEqual(d[3],a[3]/scal);
}
示例14: YuleWalker
/// <summary>
/// Solve the Yule-Walker equations for a symmetric square Toeplitz system
/// </summary>
/// <param name="R">The left-most column of the Toeplitz matrix.</param>
/// <returns>The solution vector.</returns>
/// <exception cref="ArgumentNullException">
/// <B>R</B> is a null reference.
/// </exception>
/// <exception cref="ArgumentOutOfRangeException">
/// The length of <B>R</B> must be greater than one.
/// </exception>
/// <exception cref="SingularMatrixException">
/// The Toeplitz matrix or one of the the leading sub-matrices is singular.
/// </exception>
/// <remarks>
/// This member is used to solve the Yule-Walker system <B>AX</B> = -<B>a</B>,
/// where <B>A</B> is a symmetric square Toeplitz matrix, constructed
/// from the elements <B>R[0]</B>, ..., <B>R[N-2]</B> and
/// the vector <B>a</B> is constructed from the elements
/// <B>R[1]</B>, ..., <B>R[N-1]</B>.
/// <para>
/// Durbin's algorithm is used to solve the linear system. It requires
/// approximately the <b>N</b> squared FLOPS to calculate the
/// solution (<b>N</b> is the matrix order).
/// </para>
/// </remarks>
public static ComplexDoubleVector YuleWalker(IROComplexDoubleVector R)
{
ComplexDoubleVector a;
// check parameters
if (R == null)
{
throw new System.ArgumentNullException("R");
}
else if (R.Length < 2)
{
throw new System.ArgumentOutOfRangeException("R", "The length of R must be greater than 1.");
}
else
{
int N = R.Length - 1;
a = new ComplexDoubleVector(N); // prediction coefficients
ComplexDoubleVector Z = new ComplexDoubleVector(N); // temporary storage vector
Complex e; // predictor error
Complex inner; // inner product
Complex g; // reflection coefficient
int i, j, l;
// setup first order solution
e = R[0];
if (e == Complex.Zero)
{
throw new SingularMatrixException("The Toeplitz matrix or one of the the leading sub-matrices is singular.");
}
g = -R[1] / R[0];
a[0] = g;
// calculate solution for successive orders
for (i = 1; i < N; i++)
{
e *= (Complex.One - g * g);
if (e == Complex.Zero)
{
throw new SingularMatrixException("The Toeplitz matrix or one of the the leading sub-matrices is singular.");
}
// calculate inner product
inner = R[i + 1];
for (j = 0, l = i; j < i; j++, l--)
{
inner += a[j] * R[l];
}
// update prediction coefficients
g = -(inner / e);
for (j = 0, l = i - 1; j < i; j++, l--)
{
Z[j] = a[j] + g * a[l];
}
// copy vector
for (j = 0; j < i; j++)
{
a[j] = Z[j];
}
a[i] = g;
}
}
return a;
}
示例15: Solve
/// <overloads>
/// Solve a symmetric square Toeplitz system.
/// </overloads>
/// <summary>
/// Solve a symmetric square Toeplitz system with a right-side vector.
/// </summary>
/// <param name="Y">The right-hand side of the system.</param>
/// <returns>The solution vector.</returns>
/// <exception cref="ArgumentNullException">
/// Parameter <B>Y</B> is a null reference.
/// </exception>
/// <exception cref="RankException">
/// The length of <B>Y</B> is not equal to the number of rows in the Toeplitz matrix.
/// </exception>
/// <exception cref="SingularMatrixException">
/// The Toeplitz matrix or one of the the leading sub-matrices is singular.
/// </exception>
/// <remarks>
/// This member solves the linear system <B>TX</B> = <B>Y</B>, where <B>T</B> is
/// the symmetric square Toeplitz matrix, <B>X</B> is the unknown solution vector
/// and <B>Y</B> is a known vector.
/// <para>
/// The class implicitly decomposes the inverse Toeplitz matrix into a <b>UDL</b> factorisation
/// using the Levinson algorithm, and then calculates the solution vector.
/// </para>
/// </remarks>
public ComplexDoubleVector Solve(IROComplexDoubleVector Y)
{
ComplexDoubleVector X;
// check parameters
if (Y == null)
{
throw new System.ArgumentNullException("Y");
}
else if (m_Order != Y.Length)
{
throw new RankException("The length of Y is not equal to the number of rows in the Toeplitz matrix.");
}
Compute();
if (m_IsSingular == true)
{
throw new SingularMatrixException("The Toeplitz matrix or one of the the leading sub-matrices is singular.");
}
int i, j, l; // index/loop variables
Complex Inner; // inner product
Complex G; // scaling constant
Complex[] A; // reference to current order coefficients
// allocate memory for solution
X = new ComplexDoubleVector(m_Order);
// setup zero order solution
X[0] = Y[0] / m_LeftColumn[0];
// solve systems of increasing order
for (i = 1; i < m_Order; i++)
{
// calculate inner product
Inner = Y[i];
for (j = 0, l = i; j < i; j++, l--)
{
Inner -= X[j] * m_LeftColumn[l];
}
// get the current predictor coefficients row
A = m_LowerTriangle[i];
// update the solution vector
G = Inner * m_Diagonal[i];
for (j = 0; j <= i; j++)
{
X[j] += G * A[j];
}
}
return X;
}