当前位置: 首页>>代码示例>>C#>>正文


C# VectorMachines.KernelSupportVectorMachine类代码示例

本文整理汇总了C#中Accord.MachineLearning.VectorMachines.KernelSupportVectorMachine的典型用法代码示例。如果您正苦于以下问题:C# KernelSupportVectorMachine类的具体用法?C# KernelSupportVectorMachine怎么用?C# KernelSupportVectorMachine使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


KernelSupportVectorMachine类属于Accord.MachineLearning.VectorMachines命名空间,在下文中一共展示了KernelSupportVectorMachine类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: LearnTest

        public void LearnTest()
        {

            double[][] inputs =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            int[] xor =
            {
                -1,
                 1,
                 1,
                -1
            };

            // Create Kernel Support Vector Machine with a Polynomial Kernel of 2nd degree
            KernelSupportVectorMachine machine = new KernelSupportVectorMachine(new Polynomial(2), inputs[0].Length);

            // Create the Least Squares Support Vector Machine teacher
            LeastSquaresLearning learn = new LeastSquaresLearning(machine, inputs, xor);
            learn.Complexity = 10;

            // Run the learning algorithm
            learn.Run();


            int[] output = inputs.Apply(p => Math.Sign(machine.Compute(p)));

            for (int i = 0; i < output.Length; i++)
                Assert.AreEqual(System.Math.Sign(xor[i]), System.Math.Sign(output[i]));
        }
开发者ID:qusma,项目名称:framework,代码行数:35,代码来源:LeastSquaresLearningTest.cs

示例2: LearnTest

        public void LearnTest()
        {

            double[][] inputs =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            int[] xor =
            {
                -1,
                 1,
                 1,
                -1
            };

            // Create Kernel Support Vector Machine with a Polynomial Kernel of 2nd degree
            KernelSupportVectorMachine machine = new KernelSupportVectorMachine(new Polynomial(2), inputs[0].Length);

            // Create the sequential minimal optimization teacher
            SequentialMinimalOptimization learn = new SequentialMinimalOptimization(machine, inputs, xor);

            // Run the learning algorithm
            learn.Run();


            int[] output = inputs.Apply(p => Math.Sign(machine.Compute(p)));

            for (int i = 0; i < output.Length; i++)
                Assert.AreEqual(System.Math.Sign(xor[i]), System.Math.Sign(output[i]));
        }
开发者ID:KommuSoft,项目名称:accord_framework,代码行数:34,代码来源:SequentialMinimalOptimizationTest.cs

示例3: v3_0_1

        public double v3_0_1()
        {
            var ksvm = new KernelSupportVectorMachine(new Polynomial(2), 2);
            var smo = new SequentialMinimalOptimization(ksvm, inputs, outputs);

            return smo.Run(computeError: false);
        }
开发者ID:accord-net,项目名称:framework,代码行数:7,代码来源:KernelSupportVectorMachineTest.cs

示例4: Learn

 public override Func<double[], double> Learn(LearningData learningData) {
     var svm = new KernelSupportVectorMachine(_kernel, learningData.Variables.Count);
     var smo = new SequentialMinimalOptimization(
             svm, learningData.Inputs, learningData.Outputs);
     smo.Run();
     return svm.Compute;
 }
开发者ID:RainsSoft,项目名称:Code2Xml,代码行数:7,代码来源:SvmLearnerWithLinear.cs

示例5: LearnSVM

        static KernelSupportVectorMachine LearnSVM(HSL[] positives, HSL[] negatives,
            double throwExceptionWhenErrorGreaterThan)
        {
            int[] classes = new int[positives.Length + negatives.Length];
            double[][] vectors = new double[classes.Length][];

            int index = 0;
            for (int c = 0; c < positives.Length; c++, index++)
            {
                classes[index] = 1;
                vectors[index] = HSLToDouble(positives[c]);
            }
            for (int c = 0; c < negatives.Length; c++, index++)
            {
                classes[index] = -1;
                vectors[index] = HSLToDouble(negatives[c]);
            }

            KernelSupportVectorMachine svm = new KernelSupportVectorMachine(new Gaussian(.1), vectors[0].Length);
            SequentialMinimalOptimization smo = new SequentialMinimalOptimization(svm, vectors.ToArray(), classes);
            //smo.Complexity = 1.0;
            double error = smo.Run();
            if (error > throwExceptionWhenErrorGreaterThan)
            {
                throw new Exception("Failed to get reasonable error value.");
            }

            return svm;
        }
开发者ID:kwende,项目名称:SetSpotter,代码行数:29,代码来源:Program.cs

示例6: TrainningModel

        //public SupportVectorMachine SVM
        //{
        //    get { return svm; }
        //    private set { svm = value; }
        //}

        public override void TrainningModel(TrainningData trainningData)
        {
            ContinuousDataTableAdapter continuousDataTableAdapter = new ContinuousDataTableAdapter();

            DataTable continuousDataTable = continuousDataTableAdapter.GetData();
            DataTable dataTable = continuousDataTable.DefaultView.ToTable(false, TableMetaData.TestingAttributes);
            string[] columnNames;
            double[][] inputs = dataTable.ToArray(out columnNames);
            int[] outputs = (int[])trainningData.ClassificationAttribute.Clone();

            // Create output for SVM (-1 or 1)
            for (int index = 0; index < outputs.Length; index++)
            {
                if (outputs[index] == 0)
                {
                    outputs[index] = -1;
                }
            }

            // Create a Support Vector Machine for the given inputs
            //this.svm = new SupportVectorMachine(inputs[0].Length);

            //// Create a Kernel Support Vector Machine for the given inputs
            this.svm = new KernelSupportVectorMachine(new Gaussian(0.1), inputs[0].Length);

            // Instantiate a new learning algorithm for SVMs
            SequentialMinimalOptimization smo = new SequentialMinimalOptimization(svm, inputs, outputs);

            // Set up the learning algorithm
            smo.Complexity = 1.0;

            // Run the learning algorithm 
            double error = smo.Run();
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:40,代码来源:SVMModel.cs

示例7: TrainTest

        public void TrainTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Example regression problem. Suppose we are trying
            // to model the following equation: f(x, y) = 2x + y

            double[][] inputs = // (x, y)
            {
                new double[] { 0,  1 }, // 2*0 + 1 =  1
                new double[] { 4,  3 }, // 2*4 + 3 = 11
                new double[] { 8, -8 }, // 2*8 - 8 =  8
                new double[] { 2,  2 }, // 2*2 + 2 =  6
                new double[] { 6,  1 }, // 2*6 + 1 = 13
                new double[] { 5,  4 }, // 2*5 + 4 = 14
                new double[] { 9,  1 }, // 2*9 + 1 = 19
                new double[] { 1,  6 }, // 2*1 + 6 =  8
            };

            double[] outputs = // f(x, y)
            {
                    1, 11, 8, 6, 13, 14, 19, 8
            };

            // Create Kernel Support Vector Machine with a Polynomial Kernel of 2nd degree
            var machine = new KernelSupportVectorMachine(new Polynomial(2), inputs: 2);

            // Create the sequential minimal optimization teacher
            var learn = new SequentialMinimalOptimizationRegression(machine, inputs, outputs)
            {
                Complexity = 100
            };

            // Run the learning algorithm
            double error = learn.Run();

            // Compute the answer for one particular example
            double fxy = machine.Compute(inputs[0]); // 1.0003849827673186

            // Check for correct answers
            double[] answers = new double[inputs.Length];
            for (int i = 0; i < answers.Length; i++)
                answers[i] = machine.Compute(inputs[i]);

            Assert.AreEqual(1.0, fxy, 1e-2);
            for (int i = 0; i < outputs.Length; i++)
                Assert.AreEqual(outputs[i], answers[i], 1e-2);
        }
开发者ID:accord-net,项目名称:framework,代码行数:48,代码来源:SequentialMinimalOptimizationRegressionTest.cs

示例8: ComputeTest

        public void ComputeTest()
        {
            // Example AND problem
            double[][] inputs =
            {
                new double[] { 0, 0 }, // 0 and 0: 0 (label -1)
                new double[] { 0, 1 }, // 0 and 1: 0 (label -1)
                new double[] { 1, 0 }, // 1 and 0: 0 (label -1)
                new double[] { 1, 1 }  // 1 and 1: 1 (label +1)
            };

            // Dichotomy SVM outputs should be given as [-1;+1]
            int[] labels =
            {
                // 0,  0,  0, 1
                  -1, -1, -1, 1
            };

            // Create a Support Vector Machine for the given inputs
            KernelSupportVectorMachine machine = new KernelSupportVectorMachine(new Gaussian(0.1), inputs[0].Length);

            // Instantiate a new learning algorithm for SVMs
            SequentialMinimalOptimization smo = new SequentialMinimalOptimization(machine, inputs, labels);

            // Set up the learning algorithm
            smo.Complexity = 1.0;

            // Run
            double error = smo.Run();

            Assert.AreEqual(-1, Math.Sign(machine.Compute(inputs[0])));
            Assert.AreEqual(-1, Math.Sign(machine.Compute(inputs[1])));
            Assert.AreEqual(-1, Math.Sign(machine.Compute(inputs[2])));
            Assert.AreEqual(+1, Math.Sign(machine.Compute(inputs[3])));

            Assert.AreEqual(error, 0);

            Assert.AreEqual(-0.6640625, machine.Threshold);
            Assert.AreEqual(1, machine.Weights[0]);
            Assert.AreEqual(-0.34375, machine.Weights[1]);
            Assert.AreEqual(-0.328125, machine.Weights[2]);
            Assert.AreEqual(-0.328125, machine.Weights[3]);
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:43,代码来源:KernelSupportVectorMachineTest.cs

示例9: RunTest

        public void RunTest()
        {
            Accord.Math.Tools.SetupGenerator(0);

            var dist = NormalDistribution.Standard;

            double[] x = 
	        {
		        +1.0312479734420776,
		        +0.99444115161895752,
		        +0.21835240721702576,
		        +0.47197291254997253,
		        +0.68701112270355225,
		        -0.58556461334228516,
		        -0.64154046773910522,
		        -0.66485315561294556,
		        +0.37940266728401184,
		        -0.61046308279037476
	        };

            double[][] inputs = Jagged.ColumnVector(x);

            IKernel kernel = new Linear();

            var machine = new KernelSupportVectorMachine(kernel, inputs: 1);

            var teacher = new OneclassSupportVectorLearning(machine, inputs)
            {
                Nu = 0.1
            };

            // Run the learning algorithm
            double error = teacher.Run();

            Assert.AreEqual(2, machine.Weights.Length);
            Assert.AreEqual(0.39198910030993617, machine.Weights[0]);
            Assert.AreEqual(0.60801089969006383, machine.Weights[1]);
            Assert.AreEqual(inputs[0][0], machine.SupportVectors[0][0]);
            Assert.AreEqual(inputs[7][0], machine.SupportVectors[1][0]);

        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:41,代码来源:OneclassSupportVectorLearningTest.cs

示例10: MainWindow_Loaded

        void MainWindow_Loaded(object sender, RoutedEventArgs e)
        {
            _green = KernelSupportVectorMachine.Load("resources/green.svm");
            _purple = KernelSupportVectorMachine.Load("resources/purple.svm");
            _red = KernelSupportVectorMachine.Load("resources/red.svm"); 

            FilterInfoCollection filter = new FilterInfoCollection(FilterCategory.VideoInputDevice);
            FilterInfo desired = null;
            foreach (FilterInfo info in filter)
            {
                if (info.Name == "QuickCam for Notebooks Deluxe")
                {
                    desired = info;
                    break;
                }
            }
            _device = new VideoCaptureDevice(desired.MonikerString);
            _device.NewFrame += _device_NewFrame;
            _device.Start();  

            return; 
        }
开发者ID:kwende,项目名称:SetSpotter,代码行数:22,代码来源:MainWindow.xaml.cs

示例11: PrintAccuracy

        static void PrintAccuracy(string colorName, KernelSupportVectorMachine svm, HSL[] positives, HSL[] negatives)
        {
            int numberCorrect = 0;
            for (int c = 0; c < positives.Length; c++)
            {
                double result = svm.Compute(HSLToDouble(positives[c]));
                if (Math.Sign(result) == 1)
                {
                    numberCorrect++;
                }
            }
            for (int c = 0; c < negatives.Length; c++)
            {
                double result = svm.Compute(HSLToDouble(negatives[c]));
                if (Math.Sign(result) == -1)
                {
                    numberCorrect++;
                }
            }

            Console.WriteLine(colorName + " accuracy is " +
                (numberCorrect / (positives.Length + negatives.Length * 1.0)).ToString());
        }
开发者ID:kwende,项目名称:SetSpotter,代码行数:23,代码来源:Program.cs

示例12: FixedWeightsTest

        public void FixedWeightsTest()
        {
            var dataset = KernelSupportVectorMachineTest.training;
            var inputs = dataset.Submatrix(null, 0, 3);
            var labels = Tools.Scale(0, 1, -1, 1, dataset.GetColumn(4)).ToInt32();

            KernelSupportVectorMachine machine = new KernelSupportVectorMachine(
                Gaussian.Estimate(inputs), inputs[0].Length);

            var smo = new SequentialMinimalOptimization(machine, inputs, labels);

            smo.Complexity = 10;

            double error = smo.Run();

            Assert.AreEqual(0.19047619047619047, error);
            Assert.AreEqual(265.78327637381551, (machine.Kernel as Gaussian).Sigma);
            Assert.AreEqual(29, machine.SupportVectors.Length);

            double[] expectedWeights =
            {
                1.65717694716503, 1.20005456611466, -5.70824245415995, 10,
                10, -2.38755497916487, 10, -8.15723436363058, 10, -10, 10,
                10, -0.188634936781317, -5.4354281009458, -8.48341139483265,
                -5.91105702760141, -5.71489190049223, 10, -2.37289205235858,
                -3.33031262413522, -1.97545116517677, 10, -10, -9.563186799279,
                -3.917941544845, -0.532584110773336, 4.81951847548326, 0.343668292727091,
                -4.34159482731336
            };

            Assert.IsTrue(expectedWeights.IsEqual(machine.Weights, 1e-6));

            int[] actual = new int[labels.Length];
            for (int i = 0; i < actual.Length; i++)
                actual[i] = Math.Sign(machine.Compute(inputs[i]));

            ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);

            Assert.AreEqual(8, matrix.FalseNegatives);
            Assert.AreEqual(0, matrix.FalsePositives);
            Assert.AreEqual(4, matrix.TruePositives);
            Assert.AreEqual(30, matrix.TrueNegatives);

            Assert.AreEqual(1 / 3.0, matrix.Sensitivity);
            Assert.AreEqual(1, matrix.Specificity);

            Assert.AreEqual(0.5, matrix.FScore);
            Assert.AreEqual(0.5129891760425771, matrix.MatthewsCorrelationCoefficient);
        }
开发者ID:KommuSoft,项目名称:accord_framework,代码行数:49,代码来源:SequentialMinimalOptimizationTest.cs

示例13: ComputeTest5

        public void ComputeTest5()
        {
            var dataset = yinyang;

            double[][] inputs = dataset.Submatrix(null, 0, 1).ToArray();
            int[] labels = dataset.GetColumn(2).ToInt32();

            {
                Linear kernel = new Linear();
                var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length);
                var smo = new SequentialMinimalOptimization(machine, inputs, labels);

                smo.Complexity = 1.0;

                double error = smo.Run();

                Assert.AreEqual(1.0, smo.Complexity);
                Assert.AreEqual(1.0, smo.WeightRatio);
                Assert.AreEqual(1.0, smo.NegativeWeight);
                Assert.AreEqual(1.0, smo.PositiveWeight);
                Assert.AreEqual(0.14, error);
                Assert.AreEqual(30, machine.SupportVectors.Length);

                double[] actualWeights = machine.Weights;
                double[] expectedWeights = { -1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 0.337065120144639, -1, 1, -0.337065120144639, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1 };
                Assert.IsTrue(expectedWeights.IsEqual(actualWeights, 1e-10));

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = Math.Sign(machine.Compute(inputs[i]));

                ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);

                Assert.AreEqual(7, matrix.FalseNegatives);
                Assert.AreEqual(7, matrix.FalsePositives);
                Assert.AreEqual(43, matrix.TruePositives);
                Assert.AreEqual(43, matrix.TrueNegatives);
            }

            {
                Linear kernel = new Linear();
                var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length);
                var smo = new SequentialMinimalOptimization(machine, inputs, labels);

                smo.Complexity = 1.0;
                smo.PositiveWeight = 0.3;
                smo.NegativeWeight = 1.0;

                double error = smo.Run();

                Assert.AreEqual(1.0, smo.Complexity);
                Assert.AreEqual(0.3 / 1.0, smo.WeightRatio);
                Assert.AreEqual(1.0, smo.NegativeWeight);
                Assert.AreEqual(0.3, smo.PositiveWeight);
                Assert.AreEqual(0.21, error);
                Assert.AreEqual(24, machine.SupportVectors.Length);

                double[] actualWeights = machine.Weights;
                //string str = actualWeights.ToString(Accord.Math.Formats.CSharpArrayFormatProvider.InvariantCulture);
                double[] expectedWeights = { -0.771026323762095, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -0.928973676237905, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
                Assert.IsTrue(expectedWeights.IsEqual(actualWeights, 1e-10));

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = (int)machine.Compute(inputs[i]);

                ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);

                Assert.AreEqual(50, matrix.FalseNegatives);
                Assert.AreEqual(0, matrix.FalsePositives);
                Assert.AreEqual(0, matrix.TruePositives);
                Assert.AreEqual(50, matrix.TrueNegatives);
            }

            {
                Linear kernel = new Linear();
                var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length);
                var smo = new SequentialMinimalOptimization(machine, inputs, labels);

                smo.Complexity = 1.0;
                smo.PositiveWeight = 1.0;
                smo.NegativeWeight = 0.3;

                double error = smo.Run();

                Assert.AreEqual(1.0, smo.Complexity);
                Assert.AreEqual(1.0 / 0.3, smo.WeightRatio);
                Assert.AreEqual(0.3, smo.NegativeWeight);
                Assert.AreEqual(1.0, smo.PositiveWeight);
                Assert.AreEqual(0.15, error);
                Assert.AreEqual(19, machine.SupportVectors.Length);

                double[] actualWeights = machine.Weights;
                double[] expectedWeights = new double[] { 1, 1, -0.3, 1, -0.3, 1, 1, -0.3, 1, 1, 1, 1, 1, 1, 1, 1, 0.129080057278249, 1, 0.737797469918795 };
                Assert.IsTrue(expectedWeights.IsEqual(actualWeights, 1e-10));

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = Math.Sign(machine.Compute(inputs[i]));

//.........这里部分代码省略.........
开发者ID:natepan,项目名称:framework,代码行数:101,代码来源:SequentialMinimalOptimizationTest.cs

示例14: LargeLearningTest1

        public void LargeLearningTest1()
        {
            // Create large input vectors

            int rows = 1000;
            int dimension = 10000;

            double[][] inputs = new double[rows][];
            int[] outputs = new int[rows];

            Random rnd = new Random();

            for (int i = 0; i < inputs.Length; i++)
            {
                inputs[i] = new double[dimension];

                if (i > rows / 2)
                {
                    for (int j = 0; j < dimension; j++)
                        inputs[i][j] = rnd.NextDouble();
                    outputs[i] = -1;
                }
                else
                {
                    for (int j = 0; j < dimension; j++)
                        inputs[i][j] = rnd.NextDouble() * 4.21 + 5;
                    outputs[i] = +1;
                }
            }

            KernelSupportVectorMachine svm = new KernelSupportVectorMachine(new Polynomial(2), dimension);

            SequentialMinimalOptimization smo = new SequentialMinimalOptimization(svm, inputs, outputs)
            {
                UseComplexityHeuristic = true
            };


            double error = smo.Run();

            Assert.AreEqual(0, error);
         }
开发者ID:natepan,项目名称:framework,代码行数:42,代码来源:SequentialMinimalOptimizationTest.cs

示例15: btnCreate_Click

        private void btnCreate_Click(object sender, EventArgs e)
        {
            if (dgvLearningSource.DataSource == null)
            {
                MessageBox.Show("Please load some data first.");
                return;
            }

            // Finishes and save any pending changes to the given data
            dgvLearningSource.EndEdit();



            // Creates a matrix from the entire source data table
            double[,] table = (dgvLearningSource.DataSource as DataTable).ToMatrix(out columnNames);

            // Get only the input vector values (first two columns)
            double[][] inputs = table.GetColumns(0).ToArray();

            // Get only the outputs (last column)
            double[] outputs = table.GetColumn(1);


            // Create the specified Kernel
            IKernel kernel = createKernel();


            // Create the Support Vector Machine for 1 input variable
            svm = new KernelSupportVectorMachine(kernel, inputs: 1);

            // Creates a new instance of the SMO for regression learning algorithm
            var smo = new SequentialMinimalOptimizationRegression(svm, inputs, outputs)
            {
                // Set learning parameters
                Complexity = (double)numC.Value,
                Tolerance = (double)numT.Value,
                Epsilon = (double)numEpsilon.Value
            };



            try
            {
                // Run
                double error = smo.Run();

                lbStatus.Text = "Training complete!";
            }
            catch (ConvergenceException)
            {
                lbStatus.Text = "Convergence could not be attained. " +
                    "The learned machine might still be usable.";
            }



            // Check if we got support vectors
            if (svm.SupportVectors.Length == 0)
            {
                dgvSupportVectors.DataSource = null;
                graphSupportVectors.GraphPane.CurveList.Clear();
                return;
            }



            // Show support vectors on the Support Vectors tab page
            double[][] supportVectorsWeights = svm.SupportVectors.InsertColumn(svm.Weights);

            string[] supportVectorNames = columnNames.RemoveAt(columnNames.Length - 1).Concatenate("Weight");
            dgvSupportVectors.DataSource = new ArrayDataView(supportVectorsWeights, supportVectorNames);



            // Show the support vector labels on the scatter plot
            double[] supportVectorLabels = new double[svm.SupportVectors.Length];
            for (int i = 0; i < supportVectorLabels.Length; i++)
            {
                int j = inputs.Find(sv => sv == svm.SupportVectors[i])[0];
                supportVectorLabels[i] = outputs[j];
            }

            double[][] graph = svm.SupportVectors.InsertColumn(supportVectorLabels);

            CreateScatterplot(graphSupportVectors, graph.ToMatrix());



            // Get the ranges for each variable (X and Y)
            DoubleRange range = Matrix.Range(table.GetColumn(0));

            double[][] map = Matrix.Interval(range, 0.05).ToArray();

            // Classify each point in the Cartesian coordinate system
            double[] result = map.Apply(svm.Compute);
            double[,] surface = map.ToMatrix().InsertColumn(result);

            CreateScatterplot(zedGraphControl2, surface);
        }
开发者ID:huanzl0503,项目名称:framework,代码行数:99,代码来源:MainForm.cs


注:本文中的Accord.MachineLearning.VectorMachines.KernelSupportVectorMachine类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。