本文整理汇总了C#中spline2dinterpolant类的典型用法代码示例。如果您正苦于以下问题:C# spline2dinterpolant类的具体用法?C# spline2dinterpolant怎么用?C# spline2dinterpolant使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
spline2dinterpolant类属于命名空间,在下文中一共展示了spline2dinterpolant类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: S2
/*************************************************************************
This subroutine performs linear transformation of the spline.
Input parameters:
C - spline interpolant.
A, B- transformation coefficients: S2(x,y) = A*S(x,y) + B
Output parameters:
C - transformed spline
-- ALGLIB PROJECT --
Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dlintransf(spline2dinterpolant c,
double a,
double b)
{
double[] x = new double[0];
double[] y = new double[0];
double[] f = new double[0];
int i = 0;
int j = 0;
alglib.ap.assert(c.stype==-3 || c.stype==-1, "Spline2DLinTransF: incorrect C (incorrect parameter C.SType)");
x = new double[c.n];
y = new double[c.m];
f = new double[c.m*c.n*c.d];
for(j=0; j<=c.n-1; j++)
{
x[j] = c.x[j];
}
for(i=0; i<=c.m-1; i++)
{
y[i] = c.y[i];
}
for(i=0; i<=c.m*c.n*c.d-1; i++)
{
f[i] = a*c.f[i]+b;
}
if( c.stype==-3 )
{
spline2dbuildbicubicv(x, c.n, y, c.m, f, c.d, c);
}
if( c.stype==-1 )
{
spline2dbuildbilinearv(x, c.n, y, c.m, f, c.d, c);
}
}
示例2: S
/*************************************************************************
This subroutine calculates the value of the bilinear or bicubic spline at
the given point X and its derivatives.
Input parameters:
C - spline interpolant.
X, Y- point
Output parameters:
F - S(x,y)
FX - dS(x,y)/dX
FY - dS(x,y)/dY
FXY - d2S(x,y)/dXdY
-- ALGLIB PROJECT --
Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2ddiff(spline2dinterpolant c,
double x,
double y,
ref double f,
ref double fx,
ref double fy,
ref double fxy)
{
double t = 0;
double dt = 0;
double u = 0;
double du = 0;
int ix = 0;
int iy = 0;
int l = 0;
int r = 0;
int h = 0;
int s1 = 0;
int s2 = 0;
int s3 = 0;
int s4 = 0;
int sfx = 0;
int sfy = 0;
int sfxy = 0;
double y1 = 0;
double y2 = 0;
double y3 = 0;
double y4 = 0;
double v = 0;
double t0 = 0;
double t1 = 0;
double t2 = 0;
double t3 = 0;
double u0 = 0;
double u1 = 0;
double u2 = 0;
double u3 = 0;
f = 0;
fx = 0;
fy = 0;
fxy = 0;
alglib.ap.assert(c.stype==-1 || c.stype==-3, "Spline2DDiff: incorrect C (incorrect parameter C.SType)");
alglib.ap.assert(math.isfinite(x) && math.isfinite(y), "Spline2DDiff: X or Y contains NaN or Infinite value");
//
// Prepare F, dF/dX, dF/dY, d2F/dXdY
//
f = 0;
fx = 0;
fy = 0;
fxy = 0;
if( c.d!=1 )
{
return;
}
//
// Binary search in the [ x[0], ..., x[n-2] ] (x[n-1] is not included)
//
l = 0;
r = c.n-1;
while( l!=r-1 )
{
h = (l+r)/2;
if( (double)(c.x[h])>=(double)(x) )
{
r = h;
}
else
{
l = h;
}
}
t = (x-c.x[l])/(c.x[l+1]-c.x[l]);
dt = 1.0/(c.x[l+1]-c.x[l]);
ix = l;
//
// Binary search in the [ y[0], ..., y[m-2] ] (y[m-1] is not included)
//
l = 0;
//.........这里部分代码省略.........
示例3: spline2dlintransxy
/*************************************************************************
This subroutine performs linear transformation of the spline argument.
Input parameters:
C - spline interpolant
AX, BX - transformation coefficients: x = A*t + B
AY, BY - transformation coefficients: y = A*u + B
Result:
C - transformed spline
-- ALGLIB PROJECT --
Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dlintransxy(spline2dinterpolant c,
double ax,
double bx,
double ay,
double by)
{
double[] x = new double[0];
double[] y = new double[0];
double[] f = new double[0];
double[] v = new double[0];
int i = 0;
int j = 0;
int k = 0;
alglib.ap.assert(c.stype==-3 || c.stype==-1, "Spline2DLinTransXY: incorrect C (incorrect parameter C.SType)");
alglib.ap.assert(math.isfinite(ax), "Spline2DLinTransXY: AX is infinite or NaN");
alglib.ap.assert(math.isfinite(bx), "Spline2DLinTransXY: BX is infinite or NaN");
alglib.ap.assert(math.isfinite(ay), "Spline2DLinTransXY: AY is infinite or NaN");
alglib.ap.assert(math.isfinite(by), "Spline2DLinTransXY: BY is infinite or NaN");
x = new double[c.n];
y = new double[c.m];
f = new double[c.m*c.n*c.d];
for(j=0; j<=c.n-1; j++)
{
x[j] = c.x[j];
}
for(i=0; i<=c.m-1; i++)
{
y[i] = c.y[i];
}
for(i=0; i<=c.m-1; i++)
{
for(j=0; j<=c.n-1; j++)
{
for(k=0; k<=c.d-1; k++)
{
f[c.d*(i*c.n+j)+k] = c.f[c.d*(i*c.n+j)+k];
}
}
}
//
// Handle different combinations of AX/AY
//
if( (double)(ax)==(double)(0) && (double)(ay)!=(double)(0) )
{
for(i=0; i<=c.m-1; i++)
{
spline2dcalcvbuf(c, bx, y[i], ref v);
y[i] = (y[i]-by)/ay;
for(j=0; j<=c.n-1; j++)
{
for(k=0; k<=c.d-1; k++)
{
f[c.d*(i*c.n+j)+k] = v[k];
}
}
}
}
if( (double)(ax)!=(double)(0) && (double)(ay)==(double)(0) )
{
for(j=0; j<=c.n-1; j++)
{
spline2dcalcvbuf(c, x[j], by, ref v);
x[j] = (x[j]-bx)/ax;
for(i=0; i<=c.m-1; i++)
{
for(k=0; k<=c.d-1; k++)
{
f[c.d*(i*c.n+j)+k] = v[k];
}
}
}
}
if( (double)(ax)!=(double)(0) && (double)(ay)!=(double)(0) )
{
for(j=0; j<=c.n-1; j++)
{
x[j] = (x[j]-bx)/ax;
}
for(i=0; i<=c.m-1; i++)
{
y[i] = (y[i]-by)/ay;
}
}
if( (double)(ax)==(double)(0) && (double)(ay)==(double)(0) )
{
//.........这里部分代码省略.........
示例4: Spline2DBuildBicubicV
/*************************************************************************
This subroutine was deprecated in ALGLIB 3.6.0
We recommend you to switch to Spline2DBuildBicubicV(), which is more
flexible and accepts its arguments in more convenient order.
-- ALGLIB PROJECT --
Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dbuildbicubic(double[] x,
double[] y,
double[,] f,
int m,
int n,
spline2dinterpolant c)
{
int sfx = 0;
int sfy = 0;
int sfxy = 0;
double[,] dx = new double[0,0];
double[,] dy = new double[0,0];
double[,] dxy = new double[0,0];
double t = 0;
int i = 0;
int j = 0;
int k = 0;
f = (double[,])f.Clone();
alglib.ap.assert(n>=2, "Spline2DBuildBicubicSpline: N<2");
alglib.ap.assert(m>=2, "Spline2DBuildBicubicSpline: M<2");
alglib.ap.assert(alglib.ap.len(x)>=n && alglib.ap.len(y)>=m, "Spline2DBuildBicubic: length of X or Y is too short (Length(X/Y)<N/M)");
alglib.ap.assert(apserv.isfinitevector(x, n) && apserv.isfinitevector(y, m), "Spline2DBuildBicubic: X or Y contains NaN or Infinite value");
alglib.ap.assert(alglib.ap.rows(f)>=m && alglib.ap.cols(f)>=n, "Spline2DBuildBicubic: size of F is too small (rows(F)<M or cols(F)<N)");
alglib.ap.assert(apserv.apservisfinitematrix(f, m, n), "Spline2DBuildBicubic: F contains NaN or Infinite value");
//
// Fill interpolant:
// F[0]...F[N*M-1]:
// f(i,j) table. f(0,0), f(0, 1), f(0,2) and so on...
// F[N*M]...F[2*N*M-1]:
// df(i,j)/dx table.
// F[2*N*M]...F[3*N*M-1]:
// df(i,j)/dy table.
// F[3*N*M]...F[4*N*M-1]:
// d2f(i,j)/dxdy table.
//
c.k = 3;
c.d = 1;
c.n = n;
c.m = m;
c.stype = -3;
sfx = c.n*c.m;
sfy = 2*c.n*c.m;
sfxy = 3*c.n*c.m;
c.x = new double[c.n];
c.y = new double[c.m];
c.f = new double[4*c.n*c.m];
for(i=0; i<=c.n-1; i++)
{
c.x[i] = x[i];
}
for(i=0; i<=c.m-1; i++)
{
c.y[i] = y[i];
}
//
// Sort points
//
for(j=0; j<=c.n-1; j++)
{
k = j;
for(i=j+1; i<=c.n-1; i++)
{
if( (double)(c.x[i])<(double)(c.x[k]) )
{
k = i;
}
}
if( k!=j )
{
for(i=0; i<=c.m-1; i++)
{
t = f[i,j];
f[i,j] = f[i,k];
f[i,k] = t;
}
t = c.x[j];
c.x[j] = c.x[k];
c.x[k] = t;
}
}
for(i=0; i<=c.m-1; i++)
{
k = i;
for(j=i+1; j<=c.m-1; j++)
{
if( (double)(c.y[j])<(double)(c.y[k]) )
{
//.........这里部分代码省略.........
示例5: spline2dcopy
/*************************************************************************
This subroutine makes the copy of the spline model.
Input parameters:
C - spline interpolant
Output parameters:
CC - spline copy
-- ALGLIB PROJECT --
Copyright 29.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dcopy(ref spline2dinterpolant c,
ref spline2dinterpolant cc)
{
int n = 0;
int i_ = 0;
System.Diagnostics.Debug.Assert(c.k==1 | c.k==3, "Spline2DCopy: incorrect C!");
cc.k = c.k;
n = (int)Math.Round(c.c[0]);
cc.c = new double[n];
for(i_=0; i_<=n-1;i_++)
{
cc.c[i_] = c.c[i_];
}
}
示例6: spline2dbuildbicubicv
/*************************************************************************
This subroutine builds bicubic vector-valued spline.
Input parameters:
X - spline abscissas, array[0..N-1]
Y - spline ordinates, array[0..M-1]
F - function values, array[0..M*N*D-1]:
* first D elements store D values at (X[0],Y[0])
* next D elements store D values at (X[1],Y[0])
* general form - D function values at (X[i],Y[j]) are stored
at F[D*(J*N+I)...D*(J*N+I)+D-1].
M,N - grid size, M>=2, N>=2
D - vector dimension, D>=1
Output parameters:
C - spline interpolant
-- ALGLIB PROJECT --
Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
public static void spline2dbuildbicubicv(double[] x,
int n,
double[] y,
int m,
double[] f,
int d,
spline2dinterpolant c)
{
double[,] tf = new double[0,0];
double[,] dx = new double[0,0];
double[,] dy = new double[0,0];
double[,] dxy = new double[0,0];
double t = 0;
int i = 0;
int j = 0;
int k = 0;
int di = 0;
f = (double[])f.Clone();
alglib.ap.assert(n>=2, "Spline2DBuildBicubicV: N is less than 2");
alglib.ap.assert(m>=2, "Spline2DBuildBicubicV: M is less than 2");
alglib.ap.assert(d>=1, "Spline2DBuildBicubicV: invalid argument D (D<1)");
alglib.ap.assert(alglib.ap.len(x)>=n && alglib.ap.len(y)>=m, "Spline2DBuildBicubicV: length of X or Y is too short (Length(X/Y)<N/M)");
alglib.ap.assert(apserv.isfinitevector(x, n) && apserv.isfinitevector(y, m), "Spline2DBuildBicubicV: X or Y contains NaN or Infinite value");
k = n*m*d;
alglib.ap.assert(alglib.ap.len(f)>=k, "Spline2DBuildBicubicV: length of F is too short (Length(F)<N*M*D)");
alglib.ap.assert(apserv.isfinitevector(f, k), "Spline2DBuildBicubicV: F contains NaN or Infinite value");
//
// Fill interpolant:
// F[0]...F[N*M*D-1]:
// f(i,j) table. f(0,0), f(0, 1), f(0,2) and so on...
// F[N*M*D]...F[2*N*M*D-1]:
// df(i,j)/dx table.
// F[2*N*M*D]...F[3*N*M*D-1]:
// df(i,j)/dy table.
// F[3*N*M*D]...F[4*N*M*D-1]:
// d2f(i,j)/dxdy table.
//
c.k = 3;
c.d = d;
c.n = n;
c.m = m;
c.stype = -3;
k = 4*k;
c.x = new double[c.n];
c.y = new double[c.m];
c.f = new double[k];
tf = new double[c.m, c.n];
for(i=0; i<=c.n-1; i++)
{
c.x[i] = x[i];
}
for(i=0; i<=c.m-1; i++)
{
c.y[i] = y[i];
}
//
// Sort points
//
for(j=0; j<=c.n-1; j++)
{
k = j;
for(i=j+1; i<=c.n-1; i++)
{
if( (double)(c.x[i])<(double)(c.x[k]) )
{
k = i;
}
}
if( k!=j )
{
for(i=0; i<=c.m-1; i++)
{
for(di=0; di<=c.d-1; di++)
{
t = f[c.d*(i*c.n+j)+di];
f[c.d*(i*c.n+j)+di] = f[c.d*(i*c.n+k)+di];
//.........这里部分代码省略.........
示例7: point
/*************************************************************************
This subroutine calculates bilinear or bicubic vector-valued spline at the
given point (X,Y).
INPUT PARAMETERS:
C - spline interpolant.
X, Y- point
OUTPUT PARAMETERS:
F - array[D] which stores function values. F is out-parameter and
it is reallocated after call to this function. In case you
want to reuse previously allocated F, you may use
Spline2DCalcVBuf(), which reallocates F only when it is too
small.
-- ALGLIB PROJECT --
Copyright 16.04.2012 by Bochkanov Sergey
*************************************************************************/
public static void spline2dcalcv(spline2dinterpolant c,
double x,
double y,
ref double[] f)
{
f = new double[0];
alglib.ap.assert(c.stype==-1 || c.stype==-3, "Spline2DCalcV: incorrect C (incorrect parameter C.SType)");
alglib.ap.assert(math.isfinite(x) && math.isfinite(y), "Spline2DCalcV: either X=NaN/Infinite or Y=NaN/Infinite");
f = new double[c.d];
spline2dcalcvbuf(c, x, y, ref f);
}
示例8: size
/*************************************************************************
This subroutine unpacks two-dimensional spline into the coefficients table
Input parameters:
C - spline interpolant.
Result:
M, N- grid size (x-axis and y-axis)
Tbl - coefficients table, unpacked format,
[0..(N-1)*(M-1)-1, 0..19].
For I = 0...M-2, J=0..N-2:
K = I*(N-1)+J
Tbl[K,0] = X[j]
Tbl[K,1] = X[j+1]
Tbl[K,2] = Y[i]
Tbl[K,3] = Y[i+1]
Tbl[K,4] = C00
Tbl[K,5] = C01
Tbl[K,6] = C02
Tbl[K,7] = C03
Tbl[K,8] = C10
Tbl[K,9] = C11
...
Tbl[K,19] = C33
On each grid square spline is equals to:
S(x) = SUM(c[i,j]*(x^i)*(y^j), i=0..3, j=0..3)
t = x-x[j]
u = y-y[i]
-- ALGLIB PROJECT --
Copyright 29.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dunpack(spline2dinterpolant c,
ref int m,
ref int n,
ref double[,] tbl) {
int i = 0;
int j = 0;
int ci = 0;
int cj = 0;
int k = 0;
int p = 0;
int shift = 0;
int s1 = 0;
int s2 = 0;
int s3 = 0;
int s4 = 0;
int sf = 0;
int sfx = 0;
int sfy = 0;
int sfxy = 0;
double y1 = 0;
double y2 = 0;
double y3 = 0;
double y4 = 0;
double dt = 0;
double du = 0;
m = 0;
n = 0;
tbl = new double[0, 0];
ap.assert((int)Math.Round(c.c[1]) == -3 | (int)Math.Round(c.c[1]) == -1, "SplineUnpack2D: incorrect C!");
n = (int)Math.Round(c.c[2]);
m = (int)Math.Round(c.c[3]);
tbl = new double[(n - 1) * (m - 1) - 1 + 1, 19 + 1];
//
// Fill
//
for(i = 0; i <= m - 2; i++) {
for(j = 0; j <= n - 2; j++) {
p = i * (n - 1) + j;
tbl[p, 0] = c.c[4 + j];
tbl[p, 1] = c.c[4 + j + 1];
tbl[p, 2] = c.c[4 + n + i];
tbl[p, 3] = c.c[4 + n + i + 1];
dt = 1 / (tbl[p, 1] - tbl[p, 0]);
du = 1 / (tbl[p, 3] - tbl[p, 2]);
//
// Bilinear interpolation
//
if((int)Math.Round(c.c[1]) == -1) {
for(k = 4; k <= 19; k++) {
tbl[p, k] = 0;
}
shift = 4 + n + m;
y1 = c.c[shift + n * i + j];
y2 = c.c[shift + n * i + (j + 1)];
y3 = c.c[shift + n * (i + 1) + (j + 1)];
y4 = c.c[shift + n * (i + 1) + j];
tbl[p, 4] = y1;
tbl[p, 4 + 1 * 4 + 0] = y2 - y1;
tbl[p, 4 + 0 * 4 + 1] = y4 - y1;
tbl[p, 4 + 1 * 4 + 1] = y3 - y2 - y4 + y1;
}
//
// Bicubic interpolation
//.........这里部分代码省略.........
示例9: spline2dlintransxy
/*************************************************************************
This subroutine performs linear transformation of the spline argument.
Input parameters:
C - spline interpolant
AX, BX - transformation coefficients: x = A*t + B
AY, BY - transformation coefficients: y = A*u + B
Result:
C - transformed spline
-- ALGLIB PROJECT --
Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dlintransxy(spline2dinterpolant c,
double ax,
double bx,
double ay,
double by) {
int i = 0;
int j = 0;
int n = 0;
int m = 0;
double v = 0;
double[] x = new double[0];
double[] y = new double[0];
double[,] f = new double[0, 0];
int typec = 0;
typec = (int)Math.Round(c.c[1]);
ap.assert(typec == -3 | typec == -1, "Spline2DLinTransXY: incorrect C!");
n = (int)Math.Round(c.c[2]);
m = (int)Math.Round(c.c[3]);
x = new double[n - 1 + 1];
y = new double[m - 1 + 1];
f = new double[m - 1 + 1, n - 1 + 1];
for(j = 0; j <= n - 1; j++) {
x[j] = c.c[4 + j];
}
for(i = 0; i <= m - 1; i++) {
y[i] = c.c[4 + n + i];
}
for(i = 0; i <= m - 1; i++) {
for(j = 0; j <= n - 1; j++) {
f[i, j] = c.c[4 + n + m + i * n + j];
}
}
//
// Special case: AX=0 or AY=0
//
if((double)(ax) == (double)(0)) {
for(i = 0; i <= m - 1; i++) {
v = spline2dcalc(c, bx, y[i]);
for(j = 0; j <= n - 1; j++) {
f[i, j] = v;
}
}
if(typec == -3) {
spline2dbuildbicubic(x, y, f, m, n, c);
}
if(typec == -1) {
spline2dbuildbilinear(x, y, f, m, n, c);
}
ax = 1;
bx = 0;
}
if((double)(ay) == (double)(0)) {
for(j = 0; j <= n - 1; j++) {
v = spline2dcalc(c, x[j], by);
for(i = 0; i <= m - 1; i++) {
f[i, j] = v;
}
}
if(typec == -3) {
spline2dbuildbicubic(x, y, f, m, n, c);
}
if(typec == -1) {
spline2dbuildbilinear(x, y, f, m, n, c);
}
ay = 1;
by = 0;
}
//
// General case: AX<>0, AY<>0
// Unpack, scale and pack again.
//
for(j = 0; j <= n - 1; j++) {
x[j] = (x[j] - bx) / ax;
}
for(i = 0; i <= m - 1; i++) {
y[i] = (y[i] - by) / ay;
}
if(typec == -3) {
spline2dbuildbicubic(x, y, f, m, n, c);
}
if(typec == -1) {
spline2dbuildbilinear(x, y, f, m, n, c);
}
}
示例10: S
/*************************************************************************
This subroutine calculates the value of the bilinear or bicubic spline at
the given point X.
Input parameters:
C - coefficients table.
Built by BuildBilinearSpline or BuildBicubicSpline.
X, Y- point
Result:
S(x,y)
-- ALGLIB PROJECT --
Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
public static double spline2dcalc(spline2dinterpolant c,
double x,
double y) {
double result = 0;
double v = 0;
double vx = 0;
double vy = 0;
double vxy = 0;
spline2ddiff(c, x, y, ref v, ref vx, ref vy, ref vxy);
result = v;
return result;
}
示例11: spline2dbuildbicubic
/*************************************************************************
This subroutine builds bicubic spline coefficients table.
Input parameters:
X - spline abscissas, array[0..N-1]
Y - spline ordinates, array[0..M-1]
F - function values, array[0..M-1,0..N-1]
M,N - grid size, M>=2, N>=2
Output parameters:
C - spline interpolant
-- ALGLIB PROJECT --
Copyright 05.07.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dbuildbicubic(double[] x,
double[] y,
double[,] f,
int m,
int n,
spline2dinterpolant c) {
int i = 0;
int j = 0;
int k = 0;
int tblsize = 0;
int shift = 0;
double t = 0;
double[,] dx = new double[0, 0];
double[,] dy = new double[0, 0];
double[,] dxy = new double[0, 0];
x = (double[])x.Clone();
y = (double[])y.Clone();
f = (double[,])f.Clone();
ap.assert(n >= 2 & m >= 2, "BuildBicubicSpline: N<2 or M<2!");
//
// Sort points
//
for(j = 0; j <= n - 1; j++) {
k = j;
for(i = j + 1; i <= n - 1; i++) {
if((double)(x[i]) < (double)(x[k])) {
k = i;
}
}
if(k != j) {
for(i = 0; i <= m - 1; i++) {
t = f[i, j];
f[i, j] = f[i, k];
f[i, k] = t;
}
t = x[j];
x[j] = x[k];
x[k] = t;
}
}
for(i = 0; i <= m - 1; i++) {
k = i;
for(j = i + 1; j <= m - 1; j++) {
if((double)(y[j]) < (double)(y[k])) {
k = j;
}
}
if(k != i) {
for(j = 0; j <= n - 1; j++) {
t = f[i, j];
f[i, j] = f[k, j];
f[k, j] = t;
}
t = y[i];
y[i] = y[k];
y[k] = t;
}
}
//
// Fill C:
// C[0] - length(C)
// C[1] - type(C):
// -1 = bilinear interpolant
// (see BuildBilinearInterpolant)
// -3 = general cubic spline
// C[2]:
// N (x count)
// C[3]:
// M (y count)
// C[4]...C[4+N-1]:
// x[i], i = 0...N-1
// C[4+N]...C[4+N+M-1]:
// y[i], i = 0...M-1
// C[4+N+M]...C[4+N+M+(N*M-1)]:
// f(i,j) table. f(0,0), f(0, 1), f(0,2) and so on...
// C[4+N+M+N*M]...C[4+N+M+(2*N*M-1)]:
// df(i,j)/dx table.
// C[4+N+M+2*N*M]...C[4+N+M+(3*N*M-1)]:
// df(i,j)/dy table.
// C[4+N+M+3*N*M]...C[4+N+M+(4*N*M-1)]:
// d2f(i,j)/dxdy table.
//.........这里部分代码省略.........
示例12: spline2dunserialize
/*************************************************************************
Unserialization of the spline interpolant
INPUT PARAMETERS:
RA - array of real numbers which contains interpolant,
OUTPUT PARAMETERS:
B - spline interpolant
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void spline2dunserialize(ref double[] ra,
ref spline2dinterpolant c)
{
int clen = 0;
int i_ = 0;
int i1_ = 0;
System.Diagnostics.Debug.Assert((int)Math.Round(ra[1])==spline2dvnum, "Spline2DUnserialize: corrupted array!");
c.k = (int)Math.Round(ra[2]);
clen = (int)Math.Round(ra[3]);
c.c = new double[clen];
i1_ = (3) - (0);
for(i_=0; i_<=clen-1;i_++)
{
c.c[i_] = ra[i_+i1_];
}
}
示例13: spline2dserialize
/*************************************************************************
Serialization of the spline interpolant
INPUT PARAMETERS:
B - spline interpolant
OUTPUT PARAMETERS:
RA - array of real numbers which contains interpolant,
array[0..RLen-1]
RLen - RA lenght
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void spline2dserialize(ref spline2dinterpolant c,
ref double[] ra,
ref int ralen)
{
int clen = 0;
int i_ = 0;
int i1_ = 0;
System.Diagnostics.Debug.Assert(c.k==1 | c.k==3, "Spline2DSerialize: incorrect C!");
clen = (int)Math.Round(c.c[0]);
ralen = 3+clen;
ra = new double[ralen];
ra[0] = ralen;
ra[1] = spline2dvnum;
ra[2] = c.k;
i1_ = (0) - (3);
for(i_=3; i_<=3+clen-1;i_++)
{
ra[i_] = c.c[i_+i1_];
}
}
示例14: spline2dcopy
/*************************************************************************
This subroutine makes the copy of the spline model.
Input parameters:
C - spline interpolant
Output parameters:
CC - spline copy
-- ALGLIB PROJECT --
Copyright 29.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dcopy(spline2dinterpolant c,
spline2dinterpolant cc)
{
int tblsize = 0;
int i_ = 0;
alglib.ap.assert(c.k==1 || c.k==3, "Spline2DCopy: incorrect C (incorrect parameter C.K)");
cc.k = c.k;
cc.n = c.n;
cc.m = c.m;
cc.d = c.d;
cc.stype = c.stype;
tblsize = -1;
if( c.stype==-3 )
{
tblsize = 4*c.n*c.m*c.d;
}
if( c.stype==-1 )
{
tblsize = c.n*c.m*c.d;
}
alglib.ap.assert(tblsize>0, "Spline2DCopy: internal error");
cc.x = new double[cc.n];
cc.y = new double[cc.m];
cc.f = new double[tblsize];
for(i_=0; i_<=cc.n-1;i_++)
{
cc.x[i_] = c.x[i_];
}
for(i_=0; i_<=cc.m-1;i_++)
{
cc.y[i_] = c.y[i_];
}
for(i_=0; i_<=tblsize-1;i_++)
{
cc.f[i_] = c.f[i_];
}
}
示例15: S2
/*************************************************************************
This subroutine performs linear transformation of the spline.
Input parameters:
C - spline interpolant.
A, B- transformation coefficients: S2(x,y) = A*S(x,y) + B
Output parameters:
C - transformed spline
-- ALGLIB PROJECT --
Copyright 30.06.2007 by Bochkanov Sergey
*************************************************************************/
public static void spline2dlintransf(spline2dinterpolant c,
double a,
double b) {
int i = 0;
int j = 0;
int n = 0;
int m = 0;
double[] x = new double[0];
double[] y = new double[0];
double[,] f = new double[0, 0];
int typec = 0;
typec = (int)Math.Round(c.c[1]);
ap.assert(typec == -3 | typec == -1, "Spline2DLinTransXY: incorrect C!");
n = (int)Math.Round(c.c[2]);
m = (int)Math.Round(c.c[3]);
x = new double[n - 1 + 1];
y = new double[m - 1 + 1];
f = new double[m - 1 + 1, n - 1 + 1];
for(j = 0; j <= n - 1; j++) {
x[j] = c.c[4 + j];
}
for(i = 0; i <= m - 1; i++) {
y[i] = c.c[4 + n + i];
}
for(i = 0; i <= m - 1; i++) {
for(j = 0; j <= n - 1; j++) {
f[i, j] = a * c.c[4 + n + m + i * n + j] + b;
}
}
if(typec == -3) {
spline2dbuildbicubic(x, y, f, m, n, c);
}
if(typec == -1) {
spline2dbuildbilinear(x, y, f, m, n, c);
}
}