本文整理汇总了C#中sactiveset类的典型用法代码示例。如果您正苦于以下问题:C# sactiveset类的具体用法?C# sactiveset怎么用?C# sactiveset使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
sactiveset类属于命名空间,在下文中一共展示了sactiveset类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: constraints
/*************************************************************************
This subroutine returns L1 penalty for violation of active general linear
constraints (violation of boundary or inactive linear constraints is not
added to penalty).
Penalty term is equal to:
Penalty = SUM( Abs((C_i*x-R_i)/Alpha_i) )
Here:
* summation is performed for I=0...NEC+NIC-1, ActiveSet[N+I]>0
(only for rows of CLEIC which are in active set)
* C_i is I-th row of CLEIC
* R_i is corresponding right part
* S is a scale matrix
* Alpha_i = ||S*C_i|| - is a scaling coefficient which "normalizes"
I-th summation term according to its scale.
INPUT PARAMETERS:
S - active set object
X - array[N], candidate point
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static double sasactivelcpenalty1(sactiveset state,
double[] x)
{
double result = 0;
int i = 0;
int j = 0;
int n = 0;
int nec = 0;
int nic = 0;
double v = 0;
double alpha = 0;
double p = 0;
alglib.ap.assert(state.algostate==1, "SASActiveLCPenalty1: is not in optimization mode");
sasrebuildbasis(state);
n = state.n;
nec = state.nec;
nic = state.nic;
//
// Calculate penalty term.
//
result = 0;
for(i=0; i<=nec+nic-1; i++)
{
if( state.activeset[n+i]>0 )
{
alpha = 0;
p = -state.cleic[i,n];
for(j=0; j<=n-1; j++)
{
v = state.cleic[i,j];
p = p+v*x[j];
alpha = alpha+math.sqr(v*state.s[j]);
}
alpha = Math.Sqrt(alpha);
if( (double)(alpha)!=(double)(0) )
{
result = result+Math.Abs(p/alpha);
}
}
}
return result;
}
示例2: some
/*************************************************************************
This subroutine performs correction of some (possibly infeasible) point
with respect to a) current active set, b) all boundary constraints, both
active and inactive:
0) we calculate L1 penalty term for violation of active linear constraints
(one which is returned by SASActiveLCPenalty1() function).
1) first, it performs projection (orthogonal with respect to scale matrix
S) of X into current active set: X -> X1.
2) next, we perform projection with respect to ALL boundary constraints
which are violated at X1: X1 -> X2.
3) X is replaced by X2.
The idea is that this function can preserve and enforce feasibility during
optimization, and additional penalty parameter can be used to prevent algo
from leaving feasible set because of rounding errors.
INPUT PARAMETERS:
S - active set object
X - array[N], candidate point
OUTPUT PARAMETERS:
X - "improved" candidate point:
a) feasible with respect to all boundary constraints
b) feasibility with respect to active set is retained at
good level.
Penalty - penalty term, which can be added to function value if user
wants to penalize violation of constraints (recommended).
NOTE: this function is not intended to find exact projection (i.e. best
approximation) of X into feasible set. It just improves situation a
bit.
Regular use of this function will help you to retain feasibility
- if you already have something to start with and constrain your
steps is such way that the only source of infeasibility are roundoff
errors.
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static void sascorrection(sactiveset state,
double[] x,
ref double penalty)
{
int i = 0;
int j = 0;
int n = 0;
double v = 0;
int i_ = 0;
penalty = 0;
alglib.ap.assert(state.algostate==1, "SASCorrection: is not in optimization mode");
sasrebuildbasis(state);
n = state.n;
apserv.rvectorsetlengthatleast(ref state.corrtmp, n);
//
// Calculate penalty term.
//
penalty = sasactivelcpenalty1(state, x);
//
// Perform projection 1.
//
// This projecton is given by:
//
// x_proj = x - S*S*As'*(As*x-b)
//
// where x is original x before projection, S is a scale matrix,
// As is a matrix of equality constraints (active set) which were
// orthogonalized with respect to inner product given by S (i.e. we
// have As*S*S'*As'=I), b is a right part of the orthogonalized
// constraints.
//
// NOTE: you can verify that x_proj is strictly feasible w.r.t.
// active set by multiplying it by As - you will get
// As*x_proj = As*x - As*x + b = b.
//
// This formula for projection can be obtained by solving
// following minimization problem.
//
// min ||inv(S)*(x_proj-x)||^2 s.t. As*x_proj=b
//
//
for(i_=0; i_<=n-1;i_++)
{
state.corrtmp[i_] = x[i_];
}
for(i=0; i<=state.basissize-1; i++)
{
v = -state.sbasis[i,n];
for(j=0; j<=n-1; j++)
{
v = v+state.sbasis[i,j]*state.corrtmp[j];
}
for(j=0; j<=n-1; j++)
{
state.corrtmp[j] = state.corrtmp[j]-v*state.sbasis[i,j]*math.sqr(state.s[j]);
}
//.........这里部分代码省略.........
示例3: make_copy
public override alglib.apobject make_copy()
{
sactiveset _result = new sactiveset();
_result.n = n;
_result.algostate = algostate;
_result.xc = (double[])xc.Clone();
_result.hasxc = hasxc;
_result.s = (double[])s.Clone();
_result.h = (double[])h.Clone();
_result.activeset = (int[])activeset.Clone();
_result.basisisready = basisisready;
_result.sbasis = (double[,])sbasis.Clone();
_result.pbasis = (double[,])pbasis.Clone();
_result.ibasis = (double[,])ibasis.Clone();
_result.basissize = basissize;
_result.constraintschanged = constraintschanged;
_result.hasbndl = (bool[])hasbndl.Clone();
_result.hasbndu = (bool[])hasbndu.Clone();
_result.bndl = (double[])bndl.Clone();
_result.bndu = (double[])bndu.Clone();
_result.cleic = (double[,])cleic.Clone();
_result.nec = nec;
_result.nic = nic;
_result.mtx = (double[])mtx.Clone();
_result.mtas = (int[])mtas.Clone();
_result.cdtmp = (double[])cdtmp.Clone();
_result.corrtmp = (double[])corrtmp.Clone();
_result.unitdiagonal = (double[])unitdiagonal.Clone();
_result.solver = (snnls.snnlssolver)solver.make_copy();
_result.scntmp = (double[])scntmp.Clone();
_result.tmp0 = (double[])tmp0.Clone();
_result.tmpfeas = (double[])tmpfeas.Clone();
_result.tmpm0 = (double[,])tmpm0.Clone();
_result.rctmps = (double[])rctmps.Clone();
_result.rctmpg = (double[])rctmpg.Clone();
_result.rctmprightpart = (double[])rctmprightpart.Clone();
_result.rctmpdense0 = (double[,])rctmpdense0.Clone();
_result.rctmpdense1 = (double[,])rctmpdense1.Clone();
_result.rctmpisequality = (bool[])rctmpisequality.Clone();
_result.rctmpconstraintidx = (int[])rctmpconstraintidx.Clone();
_result.rctmplambdas = (double[])rctmplambdas.Clone();
_result.tmpbasis = (double[,])tmpbasis.Clone();
return _result;
}
示例4: step
/*************************************************************************
This function recalculates constraints - activates and deactivates them
according to gradient value at current point.
Algorithm assumes that we want to make Quasi-Newton step from current
point with diagonal Quasi-Newton matrix H. Constraints are activated and
deactivated in such way that we won't violate any constraint by step.
After call to this function active set is ready to try preconditioned
steepest descent step (SASDescentDirection-SASExploreDirection-SASMoveTo).
Only already "active" and "candidate" elements of ActiveSet are examined;
constraints which are not active are not examined.
INPUT PARAMETERS:
State - active set object
GC - array[N], gradient at XC
OUTPUT PARAMETERS:
State - active set object, with new set of constraint
-- ALGLIB --
Copyright 26.09.2012 by Bochkanov Sergey
*************************************************************************/
public static void sasreactivateconstraintsprec(sactiveset state,
double[] gc)
{
alglib.ap.assert(state.algostate==1, "SASReactivateConstraintsPrec: must be in optimization mode");
reactivateconstraints(state, gc, state.h);
}
示例5: constraineddescent
/*************************************************************************
This subroutine calculates preconditioned descent direction subject to
current active set.
INPUT PARAMETERS:
State - active set object
G - array[N], gradient
H - array[N], Hessian matrix
HA - active constraints orthogonalized in such way
that HA*inv(H)*HA'= I.
Normalize- whether we need normalized descent or not
D - possibly preallocated buffer; automatically resized.
OUTPUT PARAMETERS:
D - descent direction projected onto current active set.
Components of D which correspond to active boundary
constraints are forced to be exactly zero.
In case D is non-zero and Normalize is True, it is
normalized to have unit norm.
NOTE: if we have N active constraints, D is explicitly set to zero.
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
private static void constraineddescent(sactiveset state,
double[] g,
double[] h,
double[,] ha,
bool normalize,
ref double[] d)
{
int i = 0;
int j = 0;
int n = 0;
double v = 0;
int nactive = 0;
int i_ = 0;
alglib.ap.assert(state.algostate==1, "SAS: internal error in ConstrainedDescent() - not in optimization mode");
alglib.ap.assert(state.basisisready, "SAS: internal error in ConstrainedDescent() - no basis");
n = state.n;
apserv.rvectorsetlengthatleast(ref d, n);
//
// Calculate preconditioned constrained descent direction:
//
// d := -inv(H)*( g - HA'*(HA*inv(H)*g) )
//
// Formula above always gives direction which is orthogonal to rows of HA.
// You can verify it by multiplication of both sides by HA[i] (I-th row),
// taking into account that HA*inv(H)*HA'= I (by definition of HA - it is
// orthogonal basis with inner product given by inv(H)).
//
nactive = 0;
for(i=0; i<=n-1; i++)
{
if( state.activeset[i]>0 )
{
d[i] = 0;
nactive = nactive+1;
}
else
{
d[i] = g[i];
}
}
for(i=0; i<=state.basissize-1; i++)
{
v = 0.0;
for(j=0; j<=n-1; j++)
{
v = v+ha[i,j]*d[j]/h[j];
}
for(i_=0; i_<=n-1;i_++)
{
d[i_] = d[i_] - v*ha[i,i_];
}
nactive = nactive+1;
}
v = 0.0;
for(i=0; i<=n-1; i++)
{
if( state.activeset[i]>0 )
{
d[i] = 0;
}
else
{
d[i] = -(d[i]/h[i]);
v = v+math.sqr(d[i]);
}
}
v = Math.Sqrt(v);
if( nactive>=n )
{
v = 0;
for(i=0; i<=n-1; i++)
{
d[i] = 0;
//.........这里部分代码省略.........
示例6: SASSetLC
/*************************************************************************
Another variation of SASSetLC(), which accepts linear constraints using
another representation.
Linear constraints are inactive by default (after initial creation).
INPUT PARAMETERS:
State - SAS structure
CLEIC - linear constraints, array[NEC+NIC,N+1].
Each row of C represents one constraint:
* first N elements correspond to coefficients,
* last element corresponds to the right part.
First NEC rows store equality constraints, next NIC - are
inequality ones.
All elements of C (including right part) must be finite.
NEC - number of equality constraints, NEC>=0
NIC - number of inequality constraints, NIC>=0
NOTE 1: linear (non-bound) constraints are satisfied only approximately:
* there always exists some minor violation (about Epsilon in magnitude)
due to rounding errors
* numerical differentiation, if used, may lead to function evaluations
outside of the feasible area, because algorithm does NOT change
numerical differentiation formula according to linear constraints.
If you want constraints to be satisfied exactly, try to reformulate your
problem in such manner that all constraints will become boundary ones
(this kind of constraints is always satisfied exactly, both in the final
solution and in all intermediate points).
-- ALGLIB --
Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
public static void sassetlcx(sactiveset state,
double[,] cleic,
int nec,
int nic)
{
int n = 0;
int i = 0;
int j = 0;
alglib.ap.assert(state.algostate==0, "SASSetLCX: you may change constraints only in modification mode");
n = state.n;
//
// First, check for errors in the inputs
//
alglib.ap.assert(nec>=0, "SASSetLCX: NEC<0");
alglib.ap.assert(nic>=0, "SASSetLCX: NIC<0");
alglib.ap.assert(alglib.ap.cols(cleic)>=n+1 || nec+nic==0, "SASSetLCX: Cols(CLEIC)<N+1");
alglib.ap.assert(alglib.ap.rows(cleic)>=nec+nic, "SASSetLCX: Rows(CLEIC)<NEC+NIC");
alglib.ap.assert(apserv.apservisfinitematrix(cleic, nec+nic, n+1), "SASSetLCX: CLEIC contains infinite or NaN values!");
//
// Store constraints
//
apserv.rmatrixsetlengthatleast(ref state.cleic, nec+nic, n+1);
state.nec = nec;
state.nic = nic;
for(i=0; i<=nec+nic-1; i++)
{
for(j=0; j<=n; j++)
{
state.cleic[i,j] = cleic[i,j];
}
}
//
// Mark state as changed
//
state.constraintschanged = true;
}
示例7: enforced
/*************************************************************************
This subroutine turns on optimization mode:
1. feasibility in X is enforced (in case X=S.XC and constraints have not
changed, algorithm just uses X without any modifications at all)
2. constraints are marked as "candidate" or "inactive"
INPUT PARAMETERS:
S - active set object
X - initial point (candidate), array[N]. It is expected that X
contains only finite values (we do not check it).
OUTPUT PARAMETERS:
S - state is changed
X - initial point can be changed to enforce feasibility
RESULT:
True in case feasible point was found (mode was changed to "optimization")
False in case no feasible point was found (mode was not changed)
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static bool sasstartoptimization(sactiveset state,
double[] x)
{
bool result = new bool();
int n = 0;
int nec = 0;
int nic = 0;
int i = 0;
int j = 0;
double v = 0;
int i_ = 0;
alglib.ap.assert(state.algostate==0, "SASStartOptimization: already in optimization mode");
result = false;
n = state.n;
nec = state.nec;
nic = state.nic;
//
// Enforce feasibility and calculate set of "candidate"/"active" constraints.
// Always active equality constraints are marked as "active", all other constraints
// are marked as "candidate".
//
apserv.ivectorsetlengthatleast(ref state.activeset, n+nec+nic);
for(i=0; i<=n-1; i++)
{
if( state.hasbndl[i] && state.hasbndu[i] )
{
if( (double)(state.bndl[i])>(double)(state.bndu[i]) )
{
return result;
}
}
}
for(i_=0; i_<=n-1;i_++)
{
state.xc[i_] = x[i_];
}
if( state.nec+state.nic>0 )
{
//
// General linear constraints are present; general code is used.
//
apserv.rvectorsetlengthatleast(ref state.tmp0, n);
apserv.rvectorsetlengthatleast(ref state.tmpfeas, n+state.nic);
apserv.rmatrixsetlengthatleast(ref state.tmpm0, state.nec+state.nic, n+state.nic+1);
for(i=0; i<=state.nec+state.nic-1; i++)
{
for(i_=0; i_<=n-1;i_++)
{
state.tmpm0[i,i_] = state.cleic[i,i_];
}
for(j=n; j<=n+state.nic-1; j++)
{
state.tmpm0[i,j] = 0;
}
if( i>=state.nec )
{
state.tmpm0[i,n+i-state.nec] = 1.0;
}
state.tmpm0[i,n+state.nic] = state.cleic[i,n];
}
for(i_=0; i_<=n-1;i_++)
{
state.tmpfeas[i_] = state.xc[i_];
}
for(i=0; i<=state.nic-1; i++)
{
v = 0.0;
for(i_=0; i_<=n-1;i_++)
{
v += state.cleic[i+state.nec,i_]*state.xc[i_];
}
state.tmpfeas[i+n] = Math.Max(state.cleic[i+state.nec,n]-v, 0.0);
}
if( !optserv.findfeasiblepoint(ref state.tmpfeas, state.bndl, state.hasbndl, state.bndu, state.hasbndu, n, state.nic, state.tmpm0, state.nec+state.nic, 1.0E-6, ref i, ref j) )
{
//.........这里部分代码省略.........
示例8: default
/*************************************************************************
This function sets linear constraints for SAS object.
Linear constraints are inactive by default (after initial creation).
INPUT PARAMETERS:
State - SAS structure
C - linear constraints, array[K,N+1].
Each row of C represents one constraint, either equality
or inequality (see below):
* first N elements correspond to coefficients,
* last element corresponds to the right part.
All elements of C (including right part) must be finite.
CT - type of constraints, array[K]:
* if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
* if CT[i]=0, then I-th constraint is C[i,*]*x = C[i,n+1]
* if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
K - number of equality/inequality constraints, K>=0
NOTE 1: linear (non-bound) constraints are satisfied only approximately:
* there always exists some minor violation (about Epsilon in magnitude)
due to rounding errors
* numerical differentiation, if used, may lead to function evaluations
outside of the feasible area, because algorithm does NOT change
numerical differentiation formula according to linear constraints.
If you want constraints to be satisfied exactly, try to reformulate your
problem in such manner that all constraints will become boundary ones
(this kind of constraints is always satisfied exactly, both in the final
solution and in all intermediate points).
-- ALGLIB --
Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
public static void sassetlc(sactiveset state,
double[,] c,
int[] ct,
int k)
{
int n = 0;
int i = 0;
int i_ = 0;
alglib.ap.assert(state.algostate==0, "SASSetLC: you may change constraints only in modification mode");
n = state.n;
//
// First, check for errors in the inputs
//
alglib.ap.assert(k>=0, "SASSetLC: K<0");
alglib.ap.assert(alglib.ap.cols(c)>=n+1 || k==0, "SASSetLC: Cols(C)<N+1");
alglib.ap.assert(alglib.ap.rows(c)>=k, "SASSetLC: Rows(C)<K");
alglib.ap.assert(alglib.ap.len(ct)>=k, "SASSetLC: Length(CT)<K");
alglib.ap.assert(apserv.apservisfinitematrix(c, k, n+1), "SASSetLC: C contains infinite or NaN values!");
//
// Handle zero K
//
if( k==0 )
{
state.nec = 0;
state.nic = 0;
state.constraintschanged = true;
return;
}
//
// Equality constraints are stored first, in the upper
// NEC rows of State.CLEIC matrix. Inequality constraints
// are stored in the next NIC rows.
//
// NOTE: we convert inequality constraints to the form
// A*x<=b before copying them.
//
apserv.rmatrixsetlengthatleast(ref state.cleic, k, n+1);
state.nec = 0;
state.nic = 0;
for(i=0; i<=k-1; i++)
{
if( ct[i]==0 )
{
for(i_=0; i_<=n;i_++)
{
state.cleic[state.nec,i_] = c[i,i_];
}
state.nec = state.nec+1;
}
}
for(i=0; i<=k-1; i++)
{
if( ct[i]!=0 )
{
if( ct[i]>0 )
{
for(i_=0; i_<=n;i_++)
{
state.cleic[state.nec+state.nic,i_] = -c[i,i_];
}
}
else
{
//.........这里部分代码省略.........
示例9: sassetprecdiag
/*************************************************************************
Modification of the preconditioner: diagonal of approximate Hessian is
used.
INPUT PARAMETERS:
State - structure which stores algorithm state
D - diagonal of the approximate Hessian, array[0..N-1],
(if larger, only leading N elements are used).
NOTE 1: D[i] should be positive. Exception will be thrown otherwise.
NOTE 2: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static void sassetprecdiag(sactiveset state,
double[] d)
{
int i = 0;
alglib.ap.assert(state.algostate==0, "SASSetPrecDiag: you may change preconditioner only in modification mode");
alglib.ap.assert(alglib.ap.len(d)>=state.n, "SASSetPrecDiag: D is too short");
for(i=0; i<=state.n-1; i++)
{
alglib.ap.assert(math.isfinite(d[i]), "SASSetPrecDiag: D contains infinite or NAN elements");
alglib.ap.assert((double)(d[i])>(double)(0), "SASSetPrecDiag: D contains non-positive elements");
}
for(i=0; i<=state.n-1; i++)
{
state.h[i] = d[i];
}
}
示例10: conditions
/*************************************************************************
This function sets scaling coefficients for SAS object.
ALGLIB optimizers use scaling matrices to test stopping conditions (step
size and gradient are scaled before comparison with tolerances). Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function
During orthogonalization phase, scale is used to calculate drop tolerances
(whether vector is significantly non-zero or not).
INPUT PARAMETERS:
State - structure stores algorithm state
S - array[N], non-zero scaling coefficients
S[i] may be negative, sign doesn't matter.
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static void sassetscale(sactiveset state,
double[] s)
{
int i = 0;
alglib.ap.assert(state.algostate==0, "SASSetScale: you may change scale only in modification mode");
alglib.ap.assert(alglib.ap.len(s)>=state.n, "SASSetScale: Length(S)<N");
for(i=0; i<=state.n-1; i++)
{
alglib.ap.assert(math.isfinite(s[i]), "SASSetScale: S contains infinite or NAN elements");
alglib.ap.assert((double)(s[i])!=(double)(0), "SASSetScale: S contains zero elements");
}
for(i=0; i<=state.n-1; i++)
{
state.s[i] = Math.Abs(s[i]);
}
}
示例11: SASInit
/*************************************************************************
This subroutine is used to initialize active set. By default, empty
N-variable model with no constraints is generated. Previously allocated
buffer variables are reused as much as possible.
Two use cases for this object are described below.
CASE 1 - STEEPEST DESCENT:
SASInit()
repeat:
SASReactivateConstraints()
SASDescentDirection()
SASExploreDirection()
SASMoveTo()
until convergence
CASE 1 - PRECONDITIONED STEEPEST DESCENT:
SASInit()
repeat:
SASReactivateConstraintsPrec()
SASDescentDirectionPrec()
SASExploreDirection()
SASMoveTo()
until convergence
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static void sasinit(int n,
sactiveset s)
{
int i = 0;
s.n = n;
s.algostate = 0;
//
// Constraints
//
s.constraintschanged = true;
s.nec = 0;
s.nic = 0;
apserv.rvectorsetlengthatleast(ref s.bndl, n);
apserv.bvectorsetlengthatleast(ref s.hasbndl, n);
apserv.rvectorsetlengthatleast(ref s.bndu, n);
apserv.bvectorsetlengthatleast(ref s.hasbndu, n);
for(i=0; i<=n-1; i++)
{
s.bndl[i] = Double.NegativeInfinity;
s.bndu[i] = Double.PositiveInfinity;
s.hasbndl[i] = false;
s.hasbndu[i] = false;
}
//
// current point, scale
//
s.hasxc = false;
apserv.rvectorsetlengthatleast(ref s.xc, n);
apserv.rvectorsetlengthatleast(ref s.s, n);
apserv.rvectorsetlengthatleast(ref s.h, n);
for(i=0; i<=n-1; i++)
{
s.xc[i] = 0.0;
s.s[i] = 1.0;
s.h[i] = 1.0;
}
//
// Other
//
apserv.rvectorsetlengthatleast(ref s.unitdiagonal, n);
for(i=0; i<=n-1; i++)
{
s.unitdiagonal[i] = 1.0;
}
}
示例12: norm
/*************************************************************************
This subroutine calculates scaled norm of vector after projection onto
subspace of active constraints. Most often this function is used to test
stopping conditions.
INPUT PARAMETERS:
S - active set object
D - vector whose norm is calculated
RESULT:
Vector norm (after projection and scaling)
NOTE: projection is performed first, scaling is performed after projection
NOTE: if we have N active constraints, zero value (exact zero) is returned
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static double sasscaledconstrainednorm(sactiveset state,
double[] d)
{
double result = 0;
int i = 0;
int n = 0;
double v = 0;
int nactive = 0;
int i_ = 0;
alglib.ap.assert(state.algostate==1, "SASMoveTo: is not in optimization mode");
n = state.n;
apserv.rvectorsetlengthatleast(ref state.scntmp, n);
//
// Prepare basis (if needed)
//
sasrebuildbasis(state);
//
// Calculate descent direction
//
nactive = 0;
for(i=0; i<=n-1; i++)
{
if( state.activeset[i]>0 )
{
state.scntmp[i] = 0;
nactive = nactive+1;
}
else
{
state.scntmp[i] = d[i];
}
}
if( nactive+state.basissize>=n )
{
//
// Quick exit if number of active constraints is N or larger
//
result = 0.0;
return result;
}
for(i=0; i<=state.basissize-1; i++)
{
v = 0.0;
for(i_=0; i_<=n-1;i_++)
{
v += state.ibasis[i,i_]*state.scntmp[i_];
}
for(i_=0; i_<=n-1;i_++)
{
state.scntmp[i_] = state.scntmp[i_] - v*state.ibasis[i,i_];
}
}
v = 0.0;
for(i=0; i<=n-1; i++)
{
v = v+math.sqr(state.s[i]*state.scntmp[i]);
}
result = Math.Sqrt(v);
return result;
}
示例13: sasexploredirection
/*************************************************************************
This function explores search direction and calculates bound for step as
well as information for activation of constraints.
INPUT PARAMETERS:
State - SAS structure which stores current point and all other
active set related information
D - descent direction to explore
OUTPUT PARAMETERS:
StpMax - upper limit on step length imposed by yet inactive
constraints. Can be zero in case some constraints
can be activated by zero step. Equal to some large
value in case step is unlimited.
CIdx - -1 for unlimited step, in [0,N+NEC+NIC) in case of
limited step.
VVal - value which is assigned to X[CIdx] during activation.
For CIdx<0 or CIdx>=N some dummy value is assigned to
this parameter.
*************************************************************************/
public static void sasexploredirection(sactiveset state,
double[] d,
ref double stpmax,
ref int cidx,
ref double vval)
{
int n = 0;
int nec = 0;
int nic = 0;
int i = 0;
double prevmax = 0;
double vc = 0;
double vd = 0;
int i_ = 0;
stpmax = 0;
cidx = 0;
vval = 0;
alglib.ap.assert(state.algostate==1, "SASExploreDirection: is not in optimization mode");
n = state.n;
nec = state.nec;
nic = state.nic;
cidx = -1;
vval = 0;
stpmax = 1.0E50;
for(i=0; i<=n-1; i++)
{
if( state.activeset[i]<=0 )
{
alglib.ap.assert(!state.hasbndl[i] || (double)(state.xc[i])>=(double)(state.bndl[i]), "SASExploreDirection: internal error - infeasible X");
alglib.ap.assert(!state.hasbndu[i] || (double)(state.xc[i])<=(double)(state.bndu[i]), "SASExploreDirection: internal error - infeasible X");
if( state.hasbndl[i] && (double)(d[i])<(double)(0) )
{
prevmax = stpmax;
stpmax = apserv.safeminposrv(state.xc[i]-state.bndl[i], -d[i], stpmax);
if( (double)(stpmax)<(double)(prevmax) )
{
cidx = i;
vval = state.bndl[i];
}
}
if( state.hasbndu[i] && (double)(d[i])>(double)(0) )
{
prevmax = stpmax;
stpmax = apserv.safeminposrv(state.bndu[i]-state.xc[i], d[i], stpmax);
if( (double)(stpmax)<(double)(prevmax) )
{
cidx = i;
vval = state.bndu[i];
}
}
}
}
for(i=nec; i<=nec+nic-1; i++)
{
if( state.activeset[n+i]<=0 )
{
vc = 0.0;
for(i_=0; i_<=n-1;i_++)
{
vc += state.cleic[i,i_]*state.xc[i_];
}
vc = vc-state.cleic[i,n];
vd = 0.0;
for(i_=0; i_<=n-1;i_++)
{
vd += state.cleic[i,i_]*d[i_];
}
if( (double)(vd)<=(double)(0) )
{
continue;
}
if( (double)(vc)<(double)(0) )
{
//
// XC is strictly feasible with respect to I-th constraint,
// we can perform non-zero step because there is non-zero distance
// between XC and bound.
//.........这里部分代码省略.........
示例14: sasstopoptimization
/*************************************************************************
This subroutine turns off optimization mode.
INPUT PARAMETERS:
S - active set object
OUTPUT PARAMETERS:
S - state is changed
NOTE: this function can be called many times for optimizer which was
already stopped.
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static void sasstopoptimization(sactiveset state)
{
state.algostate = 0;
}
示例15: SASExploreDirection
/*************************************************************************
This subroutine moves current point to XN, which can be:
a) point in the direction previously explored with SASExploreDirection()
function (in this case NeedAct/CIdx/CVal are used)
b) point in arbitrary direction, not necessarily previously checked with
SASExploreDirection() function.
Step may activate one constraint. It is assumed than XN is approximately
feasible (small error as large as several ulps is possible). Strict
feasibility with respect to bound constraints is enforced during
activation, feasibility with respect to general linear constraints is not
enforced.
This function activates boundary constraints, such that both is True:
1) XC[I] is not at the boundary
2) XN[I] is at the boundary or beyond it
INPUT PARAMETERS:
S - active set object
XN - new point.
NeedAct - True in case one constraint needs activation
CIdx - index of constraint, in [0,N+NEC+NIC).
Ignored if NeedAct is false.
This value is calculated by SASExploreDirection().
CVal - for CIdx in [0,N) this field stores value which is
assigned to XC[CIdx] during activation. CVal is ignored in
other cases.
This value is calculated by SASExploreDirection().
OUTPUT PARAMETERS:
S - current point and list of active constraints are changed.
RESULT:
>0, in case at least one inactive non-candidate constraint was activated
=0, in case only "candidate" constraints were activated
<0, in case no constraints were activated by the step
NOTE: in general case State.XC<>XN because activation of constraints may
slightly change current point (to enforce feasibility).
-- ALGLIB --
Copyright 21.12.2012 by Bochkanov Sergey
*************************************************************************/
public static int sasmoveto(sactiveset state,
double[] xn,
bool needact,
int cidx,
double cval)
{
int result = 0;
int n = 0;
int nec = 0;
int nic = 0;
int i = 0;
bool wasactivation = new bool();
alglib.ap.assert(state.algostate==1, "SASMoveTo: is not in optimization mode");
n = state.n;
nec = state.nec;
nic = state.nic;
//
// Save previous state, update current point
//
apserv.rvectorsetlengthatleast(ref state.mtx, n);
apserv.ivectorsetlengthatleast(ref state.mtas, n+nec+nic);
for(i=0; i<=n-1; i++)
{
state.mtx[i] = state.xc[i];
state.xc[i] = xn[i];
}
for(i=0; i<=n+nec+nic-1; i++)
{
state.mtas[i] = state.activeset[i];
}
//
// Activate constraints
//
wasactivation = false;
if( needact )
{
//
// Activation
//
alglib.ap.assert(cidx>=0 && cidx<n+nec+nic, "SASMoveTo: incorrect CIdx");
if( cidx<n )
{
//
// CIdx in [0,N-1] means that bound constraint was activated.
// We activate it explicitly to avoid situation when roundoff-error
// prevents us from moving EXACTLY to x=CVal.
//
state.xc[cidx] = cval;
}
state.activeset[cidx] = 1;
wasactivation = true;
}
//.........这里部分代码省略.........