本文整理汇总了C#中mlptrainer类的典型用法代码示例。如果您正苦于以下问题:C# mlptrainer类的具体用法?C# mlptrainer怎么用?C# mlptrainer使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
mlptrainer类属于命名空间,在下文中一共展示了mlptrainer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: dataset
/*************************************************************************
This function trains neural network passed to this function, using current
dataset (one which was passed to MLPSetDataset() or MLPSetSparseDataset())
and current training settings. Training from NRestarts random starting
positions is performed, best network is chosen.
Training is performed using current training algorithm.
INPUT PARAMETERS:
S - trainer object;
Network - neural network. It must have same number of inputs and
output/classes as was specified during creation of the
trainer object;
TNetwork - the training neural network.
User may look weights in parameter Network while
continue training process.
It has architecture like Network. You have to copy or
create new network with architecture like Network.
State - created LBFGS optimizer;
NRestarts - number of restarts, >=0:
* NRestarts>0 means that specified number of random
restarts are performed, best network is chosen after
training
* NRestarts=0 means that current state of the network
is used for training.
TrnSubset - some subset from training set(it stores row's numbers),
used as trainig set;
TrnSubsetSize- size of subset(if TrnSubsetSize<0 - used full dataset);
when TrnSubsetSize=0, network is filled by zero value,
and ValSubset parameter is IGNORED;
ValSubset - some subset from training set(it stores row's numbers),
used as validation set;
ValSubsetSize- size of subset(if ValSubsetSize<0 - used full dataset);
when ValSubsetSize<>0 this mean that is used early
stopping training algorithm;
BufWBest - buffer for storing interim resuls (BufWBest[0:WCOunt-1]
it has be allocated by user);
BufWFinal - buffer for storing interim resuls(BufWFinal[0:WCOunt-1]
it has be allocated by user).
OUTPUT PARAMETERS:
Network - trained network;
Rep - training report.
NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
network is filled by zero values. Same behavior for functions
MLPStartTraining and MLPContinueTraining.
NOTE: this method uses sum-of-squares error function for training.
-- ALGLIB --
Copyright 13.08.2012 by Bochkanov Sergey
*************************************************************************/
private static void mlptrainnetworkx(mlptrainer s,
mlpbase.multilayerperceptron network,
mlpbase.multilayerperceptron tnetwork,
minlbfgs.minlbfgsstate state,
int nrestarts,
int[] trnsubset,
int trnsubsetsize,
int[] valsubset,
int valsubsetsize,
double[] bufwbest,
double[] bufwfinal,
mlpreport rep)
{
mlpbase.modelerrors modrep = new mlpbase.modelerrors();
double eval = 0;
double v = 0;
double ebestcur = 0;
double efinal = 0;
int ngradbatch = 0;
int nin = 0;
int nout = 0;
int wcount = 0;
int twcount = 0;
int itbest = 0;
int itcnt = 0;
int ntype = 0;
int ttype = 0;
bool rndstart = new bool();
int pass = 0;
int i = 0;
int i_ = 0;
alglib.ap.assert(s.npoints>=0, "MLPTrainNetworkX: internal error - parameter S is not initialized or is spoiled(S.NPoints<0)");
if( s.rcpar )
{
ttype = 0;
}
else
{
ttype = 1;
}
if( !mlpbase.mlpissoftmax(network) )
{
ntype = 0;
}
else
{
//.........这里部分代码省略.........
示例2: initmlptrnsession
/*************************************************************************
This function initializes temporaries needed for training session.
-- ALGLIB --
Copyright 01.07.2013 by Bochkanov Sergey
*************************************************************************/
private static void initmlptrnsession(mlpbase.multilayerperceptron networktrained,
bool randomizenetwork,
mlptrainer trainer,
smlptrnsession session)
{
int nin = 0;
int nout = 0;
int wcount = 0;
int pcount = 0;
int[] dummysubset = new int[0];
//
// Prepare network:
// * copy input network to Session.Network
// * re-initialize preprocessor and weights if RandomizeNetwork=True
//
mlpbase.mlpcopy(networktrained, session.network);
if( randomizenetwork )
{
alglib.ap.assert(trainer.datatype==0 || trainer.datatype==1, "InitTemporaries: unexpected Trainer.DataType");
if( trainer.datatype==0 )
{
mlpbase.mlpinitpreprocessorsubset(session.network, trainer.densexy, trainer.npoints, dummysubset, -1);
}
if( trainer.datatype==1 )
{
mlpbase.mlpinitpreprocessorsparsesubset(session.network, trainer.sparsexy, trainer.npoints, dummysubset, -1);
}
mlpbase.mlprandomize(session.network);
session.randomizenetwork = true;
}
else
{
session.randomizenetwork = false;
}
//
// Determine network geometry and initialize optimizer
//
mlpbase.mlpproperties(session.network, ref nin, ref nout, ref wcount);
minlbfgs.minlbfgscreate(wcount, Math.Min(wcount, trainer.lbfgsfactor), session.network.weights, session.optimizer);
minlbfgs.minlbfgssetxrep(session.optimizer, true);
//
// Create buffers
//
session.wbuf0 = new double[wcount];
session.wbuf1 = new double[wcount];
//
// Initialize session result
//
mlpbase.mlpexporttunableparameters(session.network, ref session.bestparameters, ref pcount);
session.bestrmserror = math.maxrealnumber;
}
示例3: initmlpetrnsession
/*************************************************************************
This function initializes temporaries needed for ensemble training.
*************************************************************************/
private static void initmlpetrnsession(mlpbase.multilayerperceptron individualnetwork,
mlptrainer trainer,
mlpetrnsession session)
{
int[] dummysubset = new int[0];
//
// Prepare network:
// * copy input network to Session.Network
// * re-initialize preprocessor and weights if RandomizeNetwork=True
//
mlpbase.mlpcopy(individualnetwork, session.network);
initmlptrnsessions(individualnetwork, true, trainer, session.mlpsessions);
apserv.ivectorsetlengthatleast(ref session.trnsubset, trainer.npoints);
apserv.ivectorsetlengthatleast(ref session.valsubset, trainer.npoints);
}
示例4: dataset
/*************************************************************************
This function trains neural network passed to this function, using current
dataset (one which was passed to MLPSetDataset() or MLPSetSparseDataset())
and current training settings. Training from NRestarts random starting
positions is performed, best network is chosen.
This function is inteded to be used internally. It may be used in several
settings:
* training with ValSubsetSize=0, corresponds to "normal" training with
termination criteria based on S.MaxIts (steps count) and S.WStep (step
size). Training sample is given by TrnSubset/TrnSubsetSize.
* training with ValSubsetSize>0, corresponds to early stopping training
with additional MaxIts/WStep stopping criteria. Training sample is given
by TrnSubset/TrnSubsetSize, validation sample is given by ValSubset/
ValSubsetSize.
-- ALGLIB --
Copyright 13.08.2012 by Bochkanov Sergey
*************************************************************************/
private static void mlptrainnetworkx(mlptrainer s,
int nrestarts,
int algokind,
int[] trnsubset,
int trnsubsetsize,
int[] valsubset,
int valsubsetsize,
mlpbase.multilayerperceptron network,
mlpreport rep,
bool isrootcall,
alglib.smp.shared_pool sessions)
{
mlpbase.modelerrors modrep = new mlpbase.modelerrors();
double eval = 0;
double ebest = 0;
int ngradbatch = 0;
int nin = 0;
int nout = 0;
int wcount = 0;
int pcount = 0;
int itbest = 0;
int itcnt = 0;
int ntype = 0;
int ttype = 0;
bool rndstart = new bool();
int i = 0;
int nr0 = 0;
int nr1 = 0;
mlpreport rep0 = new mlpreport();
mlpreport rep1 = new mlpreport();
bool randomizenetwork = new bool();
double bestrmserror = 0;
smlptrnsession psession = null;
int i_ = 0;
mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount);
//
// Process root call
//
if( isrootcall )
{
//
// Check correctness of parameters
//
alglib.ap.assert(algokind==0 || algokind==-1, "MLPTrainNetworkX: unexpected AlgoKind");
alglib.ap.assert(s.npoints>=0, "MLPTrainNetworkX: internal error - parameter S is not initialized or is spoiled(S.NPoints<0)");
if( s.rcpar )
{
ttype = 0;
}
else
{
ttype = 1;
}
if( !mlpbase.mlpissoftmax(network) )
{
ntype = 0;
}
else
{
ntype = 1;
}
alglib.ap.assert(ntype==ttype, "MLPTrainNetworkX: internal error - type of the training network is not similar to network type in trainer object");
alglib.ap.assert(s.nin==nin, "MLPTrainNetworkX: internal error - number of inputs in trainer is not equal to number of inputs in the training network.");
alglib.ap.assert(s.nout==nout, "MLPTrainNetworkX: internal error - number of outputs in trainer is not equal to number of outputs in the training network.");
alglib.ap.assert(nrestarts>=0, "MLPTrainNetworkX: internal error - NRestarts<0.");
alglib.ap.assert(alglib.ap.len(trnsubset)>=trnsubsetsize, "MLPTrainNetworkX: internal error - parameter TrnSubsetSize more than input subset size(Length(TrnSubset)<TrnSubsetSize)");
for(i=0; i<=trnsubsetsize-1; i++)
{
alglib.ap.assert(trnsubset[i]>=0 && trnsubset[i]<=s.npoints-1, "MLPTrainNetworkX: internal error - parameter TrnSubset contains incorrect index(TrnSubset[I]<0 or TrnSubset[I]>S.NPoints-1)");
}
alglib.ap.assert(alglib.ap.len(valsubset)>=valsubsetsize, "MLPTrainNetworkX: internal error - parameter ValSubsetSize more than input subset size(Length(ValSubset)<ValSubsetSize)");
for(i=0; i<=valsubsetsize-1; i++)
{
alglib.ap.assert(valsubset[i]>=0 && valsubset[i]<=s.npoints-1, "MLPTrainNetworkX: internal error - parameter ValSubset contains incorrect index(ValSubset[I]<0 or ValSubset[I]>S.NPoints-1)");
}
//
// Train
//.........这里部分代码省略.........
示例5: MLPContinueTraining
/*************************************************************************
This function performs step-by-step training of the neural network. Here
"step-by-step" means that training starts with MLPStartTrainingX call,
and then user subsequently calls MLPContinueTrainingX to perform one more
iteration of the training.
After call to this function trainer object remembers network and is ready
to train it. However, no training is performed until first call to
MLPContinueTraining() function. Subsequent calls to MLPContinueTraining()
will advance traing progress one iteration further.
-- ALGLIB --
Copyright 13.08.2012 by Bochkanov Sergey
*************************************************************************/
private static void mlpstarttrainingx(mlptrainer s,
bool randomstart,
int algokind,
int[] subset,
int subsetsize,
smlptrnsession session)
{
int nin = 0;
int nout = 0;
int wcount = 0;
int ntype = 0;
int ttype = 0;
int i = 0;
//
// Check parameters
//
alglib.ap.assert(s.npoints>=0, "MLPStartTrainingX: internal error - parameter S is not initialized or is spoiled(S.NPoints<0)");
alglib.ap.assert(algokind==0 || algokind==-1, "MLPStartTrainingX: unexpected AlgoKind");
if( s.rcpar )
{
ttype = 0;
}
else
{
ttype = 1;
}
if( !mlpbase.mlpissoftmax(session.network) )
{
ntype = 0;
}
else
{
ntype = 1;
}
alglib.ap.assert(ntype==ttype, "MLPStartTrainingX: internal error - type of the resulting network is not similar to network type in trainer object");
mlpbase.mlpproperties(session.network, ref nin, ref nout, ref wcount);
alglib.ap.assert(s.nin==nin, "MLPStartTrainingX: number of inputs in trainer is not equal to number of inputs in the network.");
alglib.ap.assert(s.nout==nout, "MLPStartTrainingX: number of outputs in trainer is not equal to number of outputs in the network.");
alglib.ap.assert(alglib.ap.len(subset)>=subsetsize, "MLPStartTrainingX: internal error - parameter SubsetSize more than input subset size(Length(Subset)<SubsetSize)");
for(i=0; i<=subsetsize-1; i++)
{
alglib.ap.assert(subset[i]>=0 && subset[i]<=s.npoints-1, "MLPStartTrainingX: internal error - parameter Subset contains incorrect index(Subset[I]<0 or Subset[I]>S.NPoints-1)");
}
//
// Prepare session
//
minlbfgs.minlbfgssetcond(session.optimizer, 0.0, 0.0, s.wstep, s.maxits);
if( s.npoints>0 && subsetsize!=0 )
{
if( randomstart )
{
mlpbase.mlprandomize(session.network);
}
minlbfgs.minlbfgsrestartfrom(session.optimizer, session.network.weights);
}
else
{
for(i=0; i<=wcount-1; i++)
{
session.network.weights[i] = 0;
}
}
if( algokind==-1 )
{
session.algoused = s.algokind;
if( s.algokind==1 )
{
session.minibatchsize = s.minibatchsize;
}
}
else
{
session.algoused = 0;
}
hqrnd.hqrndrandomize(session.generator);
session.rstate.ia = new int[15+1];
session.rstate.ra = new double[1+1];
session.rstate.stage = -1;
}
示例6: _pexec_mlpcontinuetraining
/*************************************************************************
Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
*************************************************************************/
public static bool _pexec_mlpcontinuetraining(mlptrainer s,
mlpbase.multilayerperceptron network)
{
return mlpcontinuetraining(s,network);
}
示例7: _pexec_mlptrainensemblees
/*************************************************************************
Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
*************************************************************************/
public static void _pexec_mlptrainensemblees(mlptrainer s,
mlpe.mlpensemble ensemble,
int nrestarts,
mlpreport rep)
{
mlptrainensemblees(s,ensemble,nrestarts,rep);
}
示例8: mlpcreatetrainer
/*************************************************************************
Creation of the network trainer object for regression networks
INPUT PARAMETERS:
NIn - number of inputs, NIn>=1
NOut - number of outputs, NOut>=1
OUTPUT PARAMETERS:
S - neural network trainer object.
This structure can be used to train any regression
network with NIn inputs and NOut outputs.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
public static void mlpcreatetrainer(int nin,
int nout,
mlptrainer s)
{
alglib.ap.assert(nin>=1, "MLPCreateTrainer: NIn<1.");
alglib.ap.assert(nout>=1, "MLPCreateTrainer: NOut<1.");
s.nin = nin;
s.nout = nout;
s.rcpar = true;
s.lbfgsfactor = defaultlbfgsfactor;
s.decay = 1.0E-6;
mlpsetcond(s, 0, 0);
s.datatype = 0;
s.npoints = 0;
mlpsetalgobatch(s);
}
示例9: mlpcreatetrainercls
/*************************************************************************
Creation of the network trainer object for classification networks
INPUT PARAMETERS:
NIn - number of inputs, NIn>=1
NClasses - number of classes, NClasses>=2
OUTPUT PARAMETERS:
S - neural network trainer object.
This structure can be used to train any classification
network with NIn inputs and NOut outputs.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
public static void mlpcreatetrainercls(int nin,
int nclasses,
mlptrainer s)
{
alglib.ap.assert(nin>=1, "MLPCreateTrainerCls: NIn<1.");
alglib.ap.assert(nclasses>=2, "MLPCreateTrainerCls: NClasses<2.");
s.nin = nin;
s.nout = nclasses;
s.rcpar = false;
s.lbfgsfactor = defaultlbfgsfactor;
s.decay = 1.0E-6;
mlpsetcond(s, 0, 0);
s.datatype = 0;
s.npoints = 0;
mlpsetalgobatch(s);
}
示例10: support
/*************************************************************************
This function estimates generalization error using cross-validation on the
current dataset with current training settings.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support (C++ computational core)
!
! Second improvement gives constant speedup (2-3X). First improvement
! gives close-to-linear speedup on multicore systems. Following
! operations can be executed in parallel:
! * FoldsCount cross-validation rounds (always)
! * NRestarts training sessions performed within each of
! cross-validation rounds (if NRestarts>1)
! * gradient calculation over large dataset (if dataset is large enough)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
S - trainer object
Network - neural network. It must have same number of inputs and
output/classes as was specified during creation of the
trainer object. Network is not changed during cross-
validation and is not trained - it is used only as
representative of its architecture. I.e., we estimate
generalization properties of ARCHITECTURE, not some
specific network.
NRestarts - number of restarts, >=0:
* NRestarts>0 means that for each cross-validation
round specified number of random restarts is
performed, with best network being chosen after
training.
* NRestarts=0 is same as NRestarts=1
FoldsCount - number of folds in k-fold cross-validation:
* 2<=FoldsCount<=size of dataset
* recommended value: 10.
* values larger than dataset size will be silently
truncated down to dataset size
OUTPUT PARAMETERS:
Rep - structure which contains cross-validation estimates:
* Rep.RelCLSError - fraction of misclassified cases.
* Rep.AvgCE - acerage cross-entropy
* Rep.RMSError - root-mean-square error
* Rep.AvgError - average error
* Rep.AvgRelError - average relative error
NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
or subset with only one point was given, zeros are returned as
estimates.
NOTE: this method performs FoldsCount cross-validation rounds, each one
with NRestarts random starts. Thus, FoldsCount*NRestarts networks
are trained in total.
NOTE: Rep.RelCLSError/Rep.AvgCE are zero on regression problems.
NOTE: on classification problems Rep.RMSError/Rep.AvgError/Rep.AvgRelError
contain errors in prediction of posterior probabilities.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
public static void mlpkfoldcv(mlptrainer s,
mlpbase.multilayerperceptron network,
int nrestarts,
int foldscount,
mlpreport rep)
{
alglib.smp.shared_pool pooldatacv = new alglib.smp.shared_pool();
mlpparallelizationcv datacv = new mlpparallelizationcv();
mlpparallelizationcv sdatacv = null;
double[,] cvy = new double[0,0];
int[] folds = new int[0];
double[] buf = new double[0];
double[] dy = new double[0];
int nin = 0;
int nout = 0;
int wcount = 0;
int rowsize = 0;
int ntype = 0;
int ttype = 0;
int i = 0;
//.........这里部分代码省略.........
示例11: _pexec_mlpkfoldcv
/*************************************************************************
Single-threaded stub. HPC ALGLIB replaces it by multithreaded code.
*************************************************************************/
public static void _pexec_mlpkfoldcv(mlptrainer s,
mlpbase.multilayerperceptron network,
int nrestarts,
int foldscount,
mlpreport rep)
{
mlpkfoldcv(s,network,nrestarts,foldscount,rep);
}
示例12: make_copy
public override alglib.apobject make_copy()
{
mlptrainer _result = new mlptrainer();
_result.nin = nin;
_result.nout = nout;
_result.rcpar = rcpar;
_result.lbfgsfactor = lbfgsfactor;
_result.decay = decay;
_result.wstep = wstep;
_result.maxits = maxits;
_result.datatype = datatype;
_result.npoints = npoints;
_result.densexy = (double[,])densexy.Clone();
_result.sparsexy = (sparse.sparsematrix)sparsexy.make_copy();
_result.session = (smlptrnsession)session.make_copy();
_result.ngradbatch = ngradbatch;
_result.subset = (int[])subset.Clone();
_result.subsetsize = subsetsize;
_result.valsubset = (int[])valsubset.Clone();
_result.valsubsetsize = valsubsetsize;
_result.algokind = algokind;
_result.minibatchsize = minibatchsize;
return _result;
}
示例13: True
/*************************************************************************
This function performs step-by-step training of the neural network. Here
"step-by-step" means that training starts with MLPStartTrainingX call,
and then user subsequently calls MLPContinueTrainingX to perform one more
iteration of the training.
This function performs one more iteration of the training and returns
either True (training continues) or False (training stopped). In case True
was returned, Network weights are updated according to the current state
of the optimization progress. In case False was returned, no additional
updates is performed (previous update of the network weights moved us to
the final point, and no additional updates is needed).
EXAMPLE:
>
> [initialize network and trainer object]
>
> MLPStartTraining(Trainer, Network, True)
> while MLPContinueTraining(Trainer, Network) do
> [visualize training progress]
>
INPUT PARAMETERS:
S - trainer object
Network - neural network which receives A COPY of the actual
network which is trained by the algorithm. After each
training roung state of the network being trained is
copied to this variable.
It must have same number of inputs and output/classes
as was specified during creation of the trainer object
and it must have exactly same architecture as the
second network (TNetwork).
TNetwork - neural network being trained.
State - LBFGS optimizer, already initialized, number of
dimensions must be equal to number of weights in the
networks.
Subset - some subset from training set(it stores row's numbers);
SubsetSize - size of subset(if SubsetSize<0 - used full dataset).
NGradBatch - number of calls MLPGradBatch function. Initial value
is zero;
OUTPUT PARAMETERS:
Network - weights of the neural network are rewritten by the
current approximation;
NGradBatch - number of calls MLPGradBatch function after training.
NOTE: this method uses sum-of-squares error function for training.
NOTE: it is expected that trainer object settings are NOT changed during
step-by-step training, i.e. no one changes stopping criteria or
training set during training. It is possible and there is no defense
against such actions, but algorithm behavior in such cases is
undefined and can be unpredictable.
NOTE: It is expected that Network is the same one which was passed to
MLPStartTraining() function. However, THIS function checks only
following:
* that number of network inputs is consistent with trainer object
settings
* that number of network outputs/classes is consistent with trainer
object settings
* that number of network weights is the same as number of weights in
the network passed to MLPStartTraining() function
Exception is thrown when these conditions are violated.
It is also expected that you do not change state of the network on
your own - the only party who has right to change network during its
training is a trainer object. Any attempt to interfere with trainer
may lead to unpredictable results.
-- ALGLIB --
Copyright 13.08.2012 by Bochkanov Sergey
*************************************************************************/
private static bool mlpcontinuetrainingx(mlptrainer s,
mlpbase.multilayerperceptron network,
mlpbase.multilayerperceptron tnetwork,
minlbfgs.minlbfgsstate state,
int[] subset,
int subsetsize,
ref int ngradbatch)
{
bool result = new bool();
int nin = 0;
int nout = 0;
int wcount = 0;
int twcount = 0;
int ntype = 0;
int ttype = 0;
double decay = 0;
double v = 0;
int i = 0;
int i_ = 0;
alglib.ap.assert(s.npoints>=0, "MLPContinueTrainingX: internal error - parameter S is not initialized or is spoiled(S.NPoints<0).");
if( s.rcpar )
{
ttype = 0;
}
else
//.........这里部分代码省略.........
示例14: MLPContinueTraining
/*************************************************************************
This function performs step-by-step training of the neural network. Here
"step-by-step" means that training starts with MLPStartTrainingX call,
and then user subsequently calls MLPContinueTrainingX to perform one more
iteration of the training.
After call to this function trainer object remembers network and is ready
to train it. However, no training is performed until first call to
MLPContinueTraining() function. Subsequent calls to MLPContinueTraining()
will advance traing progress one iteration further.
EXAMPLE:
>
> ...initialize network and trainer object....
>
> MLPStartTraining(Trainer, Network, True)
> while MLPContinueTraining(Trainer, Network) do
> ...visualize training progress...
>
INPUT PARAMETERS:
S - trainer object;
Network - neural network which receives A COPY of the actual
network which is trained by the algorithm. After each
training roung state of the network being trained is
copied to this variable.
It must have same number of inputs and output/classes
as was specified during creation of the trainer object
and it must have exactly same architecture as the
second network (TNetwork).
TNetwork - neural network being trained.
State - LBFGS optimizer, already initialized, number of
dimensions must be equal to number of weights in the
networks.
RandomStart - randomize network before training or not:
* True means that network is randomized and its
initial state (one which was passed to the trainer
object) is lost;
* False means that training is started from the
current state of the network.
Subset - some subset from training set(it stores row's numbers);
SubsetSize - size of subset(if SubsetSize<0 - used full dataset).
OUTPUT PARAMETERS:
Network - neural network which is ready to training (weights are
initialized, preprocessor is initialized using current
training set)
NOTE: this method uses sum-of-squares error function for training.
NOTE: it is expected that trainer object settings are NOT changed during
step-by-step training, i.e. no one changes stopping criteria or
training set during training. It is possible and there is no defense
against such actions, but algorithm behavior in such cases is
undefined and can be unpredictable.
-- ALGLIB --
Copyright 13.08.2012 by Bochkanov Sergey
*************************************************************************/
private static void mlpstarttrainingx(mlptrainer s,
mlpbase.multilayerperceptron network,
mlpbase.multilayerperceptron tnetwork,
minlbfgs.minlbfgsstate state,
bool randomstart,
int[] subset,
int subsetsize)
{
int nin = 0;
int nout = 0;
int wcount = 0;
int twcount = 0;
int ntype = 0;
int ttype = 0;
int i = 0;
int i_ = 0;
alglib.ap.assert(s.npoints>=0, "MLPStartTrainingX: internal error - parameter S is not initialized or is spoiled(S.NPoints<0)");
if( s.rcpar )
{
ttype = 0;
}
else
{
ttype = 1;
}
if( !mlpbase.mlpissoftmax(network) )
{
ntype = 0;
}
else
{
ntype = 1;
}
alglib.ap.assert(ntype==ttype, "MLPStartTrainingX: internal error - type of the resulting network is not similar to network type in trainer object");
if( !mlpbase.mlpissoftmax(tnetwork) )
{
ntype = 0;
}
else
{
//.........这里部分代码省略.........
示例15: MLPTrain
/*************************************************************************
IMPORTANT: this is an "expert" version of the MLPTrain() function. We do
not recommend you to use it unless you are pretty sure that you
need ability to monitor training progress.
This function performs step-by-step training of the neural network. Here
"step-by-step" means that training starts with MLPStartTraining() call,
and then user subsequently calls MLPContinueTraining() to perform one more
iteration of the training.
After call to this function trainer object remembers network and is ready
to train it. However, no training is performed until first call to
MLPContinueTraining() function. Subsequent calls to MLPContinueTraining()
will advance training progress one iteration further.
EXAMPLE:
>
> ...initialize network and trainer object....
>
> MLPStartTraining(Trainer, Network, True)
> while MLPContinueTraining(Trainer, Network) do
> ...visualize training progress...
>
INPUT PARAMETERS:
S - trainer object
Network - neural network. It must have same number of inputs and
output/classes as was specified during creation of the
trainer object.
RandomStart - randomize network before training or not:
* True means that network is randomized and its
initial state (one which was passed to the trainer
object) is lost.
* False means that training is started from the
current state of the network
OUTPUT PARAMETERS:
Network - neural network which is ready to training (weights are
initialized, preprocessor is initialized using current
training set)
NOTE: this method uses sum-of-squares error function for training.
NOTE: it is expected that trainer object settings are NOT changed during
step-by-step training, i.e. no one changes stopping criteria or
training set during training. It is possible and there is no defense
against such actions, but algorithm behavior in such cases is
undefined and can be unpredictable.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
public static void mlpstarttraining(mlptrainer s,
mlpbase.multilayerperceptron network,
bool randomstart)
{
int nin = 0;
int nout = 0;
int wcount = 0;
int ntype = 0;
int ttype = 0;
alglib.ap.assert(s.npoints>=0, "MLPStartTraining: parameter S is not initialized or is spoiled(S.NPoints<0)");
if( !mlpbase.mlpissoftmax(network) )
{
ntype = 0;
}
else
{
ntype = 1;
}
if( s.rcpar )
{
ttype = 0;
}
else
{
ttype = 1;
}
alglib.ap.assert(ntype==ttype, "MLPStartTraining: type of input network is not similar to network type in trainer object");
mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount);
alglib.ap.assert(s.nin==nin, "MLPStartTraining: number of inputs in trainer is not equal to number of inputs in the network.");
alglib.ap.assert(s.nout==nout, "MLPStartTraining: number of outputs in trainer is not equal to number of outputs in the network.");
//
// Initialize temporaries
//
initmlptrnsession(network, randomstart, s, s.session);
//
// Train network
//
mlpstarttrainingx(s, randomstart, -1, s.subset, -1, s.session);
//
// Update network
//
mlpbase.mlpcopytunableparameters(s.session.network, network);
}