本文整理汇总了C#中minqpstate类的典型用法代码示例。如果您正苦于以下问题:C# minqpstate类的具体用法?C# minqpstate怎么用?C# minqpstate使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
minqpstate类属于命名空间,在下文中一共展示了minqpstate类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: minqpboundedstepandactivation
/*************************************************************************
Having feasible current point XC and possibly infeasible candidate point
XN, this function performs longest step from XC to XN which retains
feasibility. In case XN is found to be infeasible, at least one constraint
is activated.
For example, if we have:
XC=0.5
XN=1.2
x>=0, x<=1
then this function will move us to X=1.0 and activate constraint "x<=1".
INPUT PARAMETERS:
State - MinQP state.
XC - current point, must be feasible with respect to
all constraints
XN - candidate point, can be infeasible with respect to some
constraints. Must be located in the subspace of current
active set, i.e. it is feasible with respect to already
active constraints.
Buf - temporary buffer, automatically resized if needed
OUTPUT PARAMETERS:
State - this function changes following fields of State:
* State.ActiveSet
* State.ActiveC - active linear constraints
XC - new position
RESULT:
>0, in case at least one inactive non-candidate constraint was activated
=0, in case only "candidate" constraints were activated
<0, in case no constraints were activated by the step
-- ALGLIB --
Copyright 29.02.2012 by Bochkanov Sergey
*************************************************************************/
private static int minqpboundedstepandactivation(minqpstate state,
double[] xn,
ref double[] buf)
{
int result = 0;
int n = 0;
double stpmax = 0;
int cidx = 0;
double cval = 0;
bool needact = new bool();
double v = 0;
int i_ = 0;
n = state.n;
apserv.rvectorsetlengthatleast(ref buf, n);
for(i_=0; i_<=n-1;i_++)
{
buf[i_] = xn[i_];
}
for(i_=0; i_<=n-1;i_++)
{
buf[i_] = buf[i_] - state.sas.xc[i_];
}
sactivesets.sasexploredirection(state.sas, buf, ref stpmax, ref cidx, ref cval);
needact = (double)(stpmax)<=(double)(1);
v = Math.Min(stpmax, 1.0);
for(i_=0; i_<=n-1;i_++)
{
buf[i_] = v*buf[i_];
}
for(i_=0; i_<=n-1;i_++)
{
buf[i_] = buf[i_] + state.sas.xc[i_];
}
result = sactivesets.sasmoveto(state.sas, buf, needact, cidx, cval);
return result;
}
示例2: MinQPSetQuadraticTerm
/*************************************************************************
Fast version of MinQPSetQuadraticTerm(), which doesn't check its arguments.
It accepts additional parameter - shift S, which allows to "shift" matrix
A by adding s*I to A. S must be positive (although it is not checked).
For internal use only.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetquadratictermfast(minqpstate state,
double[,] a,
bool isupper,
double s)
{
int i = 0;
int j = 0;
int n = 0;
double v = 0;
int j0 = 0;
int j1 = 0;
n = state.n;
state.akind = 0;
cqmodels.cqmseta(state.a, a, isupper, 1.0);
if( (double)(s)>(double)(0) )
{
apserv.rvectorsetlengthatleast(ref state.tmp0, n);
for(i=0; i<=n-1; i++)
{
state.tmp0[i] = a[i,i]+s;
}
cqmodels.cqmrewritedensediagonal(state.a, state.tmp0);
}
//
// Estimate norm of A
// (it will be used later in the quadratic penalty function)
//
state.absamax = 0;
state.absasum = 0;
state.absasum2 = 0;
for(i=0; i<=n-1; i++)
{
if( isupper )
{
j0 = i;
j1 = n-1;
}
else
{
j0 = 0;
j1 = i;
}
for(j=j0; j<=j1; j++)
{
v = Math.Abs(a[i,j]);
state.absamax = Math.Max(state.absamax, v);
state.absasum = state.absasum+v;
state.absasum2 = state.absasum2+v*v;
}
}
}
示例3: MinQPSetStartingPoint
/*************************************************************************
Fast version of MinQPSetStartingPoint(), which doesn't check its arguments.
For internal use only.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetstartingpointfast(minqpstate state,
double[] x)
{
int n = 0;
int i_ = 0;
n = state.n;
for(i_=0; i_<=n-1;i_++)
{
state.startx[i_] = x[i_];
}
state.havex = true;
}
示例4: MinQPResults
/*************************************************************************
This function solves quadratic programming problem.
Prior to calling this function you should choose solver by means of one of
the following functions:
* MinQPSetAlgoQuickQP() - for QuickQP solver
* MinQPSetAlgoBLEIC() - for BLEIC-QP solver
These functions also allow you to control stopping criteria of the solver.
If you did not set solver, MinQP subpackage will automatically select
solver for your problem and will run it with default stopping criteria.
However, it is better to set explicitly solver and its stopping criteria.
INPUT PARAMETERS:
State - algorithm state
You should use MinQPResults() function to access results after calls
to this function.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey.
Special thanks to Elvira Illarionova for important suggestions on
the linearly constrained QP algorithm.
*************************************************************************/
public static void minqpoptimize(minqpstate state)
{
int n = 0;
int i = 0;
int nbc = 0;
int currentsolver = 0;
n = state.n;
state.repterminationtype = -5;
state.repinneriterationscount = 0;
state.repouteriterationscount = 0;
state.repncholesky = 0;
state.repnmv = 0;
//
// check correctness of constraints
//
for(i=0; i<=n-1; i++)
{
if( state.havebndl[i] && state.havebndu[i] )
{
if( (double)(state.bndl[i])>(double)(state.bndu[i]) )
{
state.repterminationtype = -3;
return;
}
}
}
//
// count number of bound and linear constraints
//
nbc = 0;
for(i=0; i<=n-1; i++)
{
if( state.havebndl[i] )
{
nbc = nbc+1;
}
if( state.havebndu[i] )
{
nbc = nbc+1;
}
}
//
// Initial point:
// * if we have starting point in StartX, we just have to bound it
// * if we do not have StartX, deduce initial point from boundary constraints
//
if( state.havex )
{
for(i=0; i<=n-1; i++)
{
state.xs[i] = state.startx[i];
if( state.havebndl[i] && (double)(state.xs[i])<(double)(state.bndl[i]) )
{
state.xs[i] = state.bndl[i];
}
if( state.havebndu[i] && (double)(state.xs[i])>(double)(state.bndu[i]) )
{
state.xs[i] = state.bndu[i];
}
}
}
else
{
for(i=0; i<=n-1; i++)
{
if( state.havebndl[i] && state.havebndu[i] )
{
state.xs[i] = 0.5*(state.bndl[i]+state.bndu[i]);
continue;
}
//.........这里部分代码省略.........
示例5: solver
/*************************************************************************
This function tells solver to use BLEIC-based algorithm and sets stopping
criteria for the algorithm.
ALGORITHM FEATURES:
* supports dense and sparse QP problems
* supports boundary and general linear equality/inequality constraints
* can solve all types of problems (convex, semidefinite, nonconvex) as
long as they are bounded from below under constraints.
Say, it is possible to solve "min{-x^2} subject to -1<=x<=+1".
Of course, global minimum is found only for positive definite and
semidefinite problems. As for indefinite ones - only local minimum is
found.
ALGORITHM OUTLINE:
* BLEIC-QP solver is just a driver function for MinBLEIC solver; it solves
quadratic programming problem as general linearly constrained
optimization problem, which is solved by means of BLEIC solver (part of
ALGLIB, active set method).
ALGORITHM LIMITATIONS:
* unlike QuickQP solver, this algorithm does not perform Newton steps and
does not use Level 3 BLAS. Being general-purpose active set method, it
can activate constraints only one-by-one. Thus, its performance is lower
than that of QuickQP.
* its precision is also a bit inferior to that of QuickQP. BLEIC-QP
performs only LBFGS steps (no Newton steps), which are good at detecting
neighborhood of the solution, buy need many iterations to find solution
with more than 6 digits of precision.
INPUT PARAMETERS:
State - structure which stores algorithm state
EpsG - >=0
The subroutine finishes its work if the condition
|v|<EpsG is satisfied, where:
* |.| means Euclidian norm
* v - scaled constrained gradient vector, v[i]=g[i]*s[i]
* g - gradient
* s - scaling coefficients set by MinQPSetScale()
EpsF - >=0
The subroutine finishes its work if exploratory steepest
descent step on k+1-th iteration satisfies following
condition: |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
EpsX - >=0
The subroutine finishes its work if exploratory steepest
descent step on k+1-th iteration satisfies following
condition:
* |.| means Euclidian norm
* v - scaled step vector, v[i]=dx[i]/s[i]
* dx - step vector, dx=X(k+1)-X(k)
* s - scaling coefficients set by MinQPSetScale()
MaxIts - maximum number of iterations. If MaxIts=0, the number of
iterations is unlimited. NOTE: this algorithm uses LBFGS
iterations, which are relatively cheap, but improve
function value only a bit. So you will need many iterations
to converge - from 0.1*N to 10*N, depending on problem's
condition number.
IT IS VERY IMPORTANT TO CALL MinQPSetScale() WHEN YOU USE THIS ALGORITHM
BECAUSE ITS STOPPING CRITERIA ARE SCALE-DEPENDENT!
Passing EpsG=0, EpsF=0 and EpsX=0 and MaxIts=0 (simultaneously) will lead
to automatic stopping criterion selection (presently it is small step
length, but it may change in the future versions of ALGLIB).
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetalgobleic(minqpstate state,
double epsg,
double epsf,
double epsx,
int maxits)
{
alglib.ap.assert(math.isfinite(epsg), "MinQPSetAlgoBLEIC: EpsG is not finite number");
alglib.ap.assert((double)(epsg)>=(double)(0), "MinQPSetAlgoBLEIC: negative EpsG");
alglib.ap.assert(math.isfinite(epsf), "MinQPSetAlgoBLEIC: EpsF is not finite number");
alglib.ap.assert((double)(epsf)>=(double)(0), "MinQPSetAlgoBLEIC: negative EpsF");
alglib.ap.assert(math.isfinite(epsx), "MinQPSetAlgoBLEIC: EpsX is not finite number");
alglib.ap.assert((double)(epsx)>=(double)(0), "MinQPSetAlgoBLEIC: negative EpsX");
alglib.ap.assert(maxits>=0, "MinQPSetAlgoBLEIC: negative MaxIts!");
state.algokind = 2;
if( (((double)(epsg)==(double)(0) && (double)(epsf)==(double)(0)) && (double)(epsx)==(double)(0)) && maxits==0 )
{
epsx = 1.0E-6;
}
state.qpbleicsettingsuser.epsg = epsg;
state.qpbleicsettingsuser.epsf = epsf;
state.qpbleicsettingsuser.epsx = epsx;
state.qpbleicsettingsuser.maxits = maxits;
}
示例6: default
/*************************************************************************
This function sets boundary constraints for QP solver
Boundary constraints are inactive by default (after initial creation).
After being set, they are preserved until explicitly turned off with
another SetBC() call.
INPUT PARAMETERS:
State - structure stores algorithm state
BndL - lower bounds, array[N].
If some (all) variables are unbounded, you may specify
very small number or -INF (latter is recommended because
it will allow solver to use better algorithm).
BndU - upper bounds, array[N].
If some (all) variables are unbounded, you may specify
very large number or +INF (latter is recommended because
it will allow solver to use better algorithm).
NOTE: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetbc(minqpstate state,
double[] bndl,
double[] bndu)
{
int i = 0;
int n = 0;
n = state.n;
alglib.ap.assert(alglib.ap.len(bndl)>=n, "MinQPSetBC: Length(BndL)<N");
alglib.ap.assert(alglib.ap.len(bndu)>=n, "MinQPSetBC: Length(BndU)<N");
for(i=0; i<=n-1; i++)
{
alglib.ap.assert(math.isfinite(bndl[i]) || Double.IsNegativeInfinity(bndl[i]), "MinQPSetBC: BndL contains NAN or +INF");
alglib.ap.assert(math.isfinite(bndu[i]) || Double.IsPositiveInfinity(bndu[i]), "MinQPSetBC: BndU contains NAN or -INF");
state.bndl[i] = bndl[i];
state.havebndl[i] = math.isfinite(bndl[i]);
state.bndu[i] = bndu[i];
state.havebndu[i] = math.isfinite(bndu[i]);
}
}
示例7: MinQPSetQuadraticTerm
/*************************************************************************
Fast version of MinQPSetQuadraticTerm(), which doesn't check its arguments.
It accepts additional parameter - shift S, which allows to "shift" matrix
A by adding s*I to A. S must be positive (although it is not checked).
For internal use only.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetquadratictermfast(minqpstate state,
double[,] a,
bool isupper,
double s)
{
int k = 0;
int n = 0;
int i_ = 0;
//
// We store off-diagonal part of A in the lower triangle of DenseA.
// Diagonal elements of A are stored in the DiagA.
// Diagonal of DenseA and uppper triangle are used as temporaries.
//
// Why such complex storage? Because it:
// 1. allows us to easily recover from exceptions (lower triangle
// is unmodified during execution as well as DiagA, and on entry
// we will always find unmodified matrix)
// 2. allows us to make Cholesky decomposition in the upper triangle
// of DenseA or to do other SPD-related operations.
//
n = state.n;
state.akind = 0;
apserv.rmatrixsetlengthatleast(ref state.densea, n, n);
apserv.rvectorsetlengthatleast(ref state.diaga, n);
if( isupper )
{
for(k=0; k<=n-2; k++)
{
state.diaga[k] = a[k,k]+s;
for(i_=k+1; i_<=n-1;i_++)
{
state.densea[i_,k] = a[k,i_];
}
}
state.diaga[n-1] = a[n-1,n-1]+s;
}
else
{
state.diaga[0] = a[0,0]+s;
for(k=1; k<=n-1; k++)
{
for(i_=0; i_<=k-1;i_++)
{
state.densea[k,i_] = a[k,i_];
}
state.diaga[k] = a[k,k]+s;
}
}
}
示例8: minqpcreate
/*************************************************************************
CONSTRAINED QUADRATIC PROGRAMMING
The subroutine creates QP optimizer. After initial creation, it contains
default optimization problem with zero quadratic and linear terms and no
constraints. You should set quadratic/linear terms with calls to functions
provided by MinQP subpackage.
INPUT PARAMETERS:
N - problem size
OUTPUT PARAMETERS:
State - optimizer with zero quadratic/linear terms
and no constraints
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpcreate(int n,
minqpstate state)
{
int i = 0;
ap.assert(n>=1, "MinQPCreate: N<1");
//
// initialize QP solver
//
state.n = n;
state.akind = -1;
state.repterminationtype = 0;
state.b = new double[n];
state.bndl = new double[n];
state.bndu = new double[n];
state.workbndl = new double[n];
state.workbndu = new double[n];
state.havebndl = new bool[n];
state.havebndu = new bool[n];
state.startx = new double[n];
state.xorigin = new double[n];
state.xc = new double[n];
state.gc = new double[n];
for(i=0; i<=n-1; i++)
{
state.b[i] = 0.0;
state.workbndl[i] = Double.NegativeInfinity;
state.workbndu[i] = Double.PositiveInfinity;
state.havebndl[i] = false;
state.havebndu[i] = false;
state.startx[i] = 0.0;
state.xorigin[i] = 0.0;
}
state.havex = false;
minqpsetalgocholesky(state);
}
示例9: MinQPResults
/*************************************************************************
This function solves quadratic programming problem.
You should call it after setting solver options with MinQPSet...() calls.
INPUT PARAMETERS:
State - algorithm state
You should use MinQPResults() function to access results after calls
to this function.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpoptimize(minqpstate state)
{
int n = 0;
int i = 0;
int j = 0;
int k = 0;
int nbc = 0;
int nlc = 0;
int nactive = 0;
int nfree = 0;
double f = 0;
double fprev = 0;
double v = 0;
bool b = new bool();
int i_ = 0;
n = state.n;
state.repterminationtype = -5;
state.repinneriterationscount = 0;
state.repouteriterationscount = 0;
state.repncholesky = 0;
state.repnmv = 0;
//
// check correctness of constraints
//
for(i=0; i<=n-1; i++)
{
if( state.havebndl[i] & state.havebndu[i] )
{
if( (double)(state.bndl[i])>(double)(state.bndu[i]) )
{
state.repterminationtype = -3;
return;
}
}
}
//
// count number of bound and linear constraints
//
nbc = 0;
nlc = 0;
for(i=0; i<=n-1; i++)
{
if( state.havebndl[i] )
{
nbc = nbc+1;
}
if( state.havebndu[i] )
{
nbc = nbc+1;
}
}
//
// Our formulation of quadratic problem includes origin point,
// i.e. we have F(x-x_origin) which is minimized subject to
// constraints on x, instead of having simply F(x).
//
// Here we make transition from non-zero origin to zero one.
// In order to make such transition we have to:
// 1. subtract x_origin from x_start
// 2. modify constraints
// 3. solve problem
// 4. add x_origin to solution
//
// There is alternate solution - to modify quadratic function
// by expansion of multipliers containing (x-x_origin), but
// we prefer to modify constraints, because it is a) more precise
// and b) easier to to.
//
// Parts (1)-(2) are done here. After this block is over,
// we have:
// * XC, which stores shifted XStart (if we don't have XStart,
// value of XC will be ignored later)
// * WorkBndL, WorkBndU, which store modified boundary constraints.
//
for(i=0; i<=n-1; i++)
{
state.xc[i] = state.startx[i]-state.xorigin[i];
if( state.havebndl[i] )
{
state.workbndl[i] = state.bndl[i]-state.xorigin[i];
}
if( state.havebndu[i] )
{
//.........这里部分代码省略.........
示例10: minqpxtax
/*************************************************************************
This function calculates x'*A*x for given X.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
private static double minqpxtax(minqpstate state,
double[] x)
{
double result = 0;
int n = 0;
int i = 0;
int j = 0;
n = state.n;
ap.assert(state.akind==-1 | state.akind==0, "MinQPXTAX: internal error");
result = 0;
//
// zero A
//
if( state.akind==-1 )
{
result = 0.0;
return result;
}
//
// dense A
//
if( state.akind==0 )
{
result = 0;
for(i=0; i<=n-1; i++)
{
for(j=0; j<=i-1; j++)
{
result = result+state.densea[i,j]*x[i]*x[j];
}
result = result+0.5*state.diaga[i]*math.sqr(x[i]);
}
return result;
}
return result;
}
示例11: minqpgrad
/*************************************************************************
This function calculates gradient of quadratic function at XC and stores
it in the GC.
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
private static void minqpgrad(minqpstate state)
{
int n = 0;
int i = 0;
double v = 0;
int i_ = 0;
n = state.n;
ap.assert(state.akind==-1 | state.akind==0, "MinQPGrad: internal error");
//
// zero A
//
if( state.akind==-1 )
{
for(i_=0; i_<=n-1;i_++)
{
state.gc[i_] = state.b[i_];
}
return;
}
//
// dense A
//
if( state.akind==0 )
{
for(i_=0; i_<=n-1;i_++)
{
state.gc[i_] = state.b[i_];
}
state.gc[0] = state.gc[0]+state.diaga[0]*state.xc[0];
for(i=1; i<=n-1; i++)
{
v = 0.0;
for(i_=0; i_<=i-1;i_++)
{
v += state.densea[i,i_]*state.xc[i_];
}
state.gc[i] = state.gc[i]+v+state.diaga[i]*state.xc[i];
v = state.xc[i];
for(i_=0; i_<=i-1;i_++)
{
state.gc[i_] = state.gc[i_] + v*state.densea[i,i_];
}
}
return;
}
}
示例12: constraints
/*************************************************************************
Optimum of A subject to:
a) active boundary constraints (given by ActiveSet[] and corresponding
elements of XC)
b) active linear constraints (given by C, R, LagrangeC)
INPUT PARAMETERS:
A - main quadratic term of the model;
although structure may store linear and rank-K terms,
these terms are ignored and rewritten by this function.
ANorm - estimate of ||A|| (2-norm is used)
B - array[N], linear term of the model
XN - possibly preallocated buffer
Tmp - temporary buffer (automatically resized)
Tmp1 - temporary buffer (automatically resized)
OUTPUT PARAMETERS:
A - modified quadratic model (this function changes rank-K
term and linear term of the model)
LagrangeC- current estimate of the Lagrange coefficients
XN - solution
RESULT:
True on success, False on failure (non-SPD model)
-- ALGLIB --
Copyright 20.06.2012 by Bochkanov Sergey
*************************************************************************/
private static bool minqpconstrainedoptimum(minqpstate state,
cqmodels.convexquadraticmodel a,
double anorm,
double[] b,
ref double[] xn,
ref double[] tmp,
ref bool[] tmpb,
ref double[] lagrangec)
{
bool result = new bool();
int itidx = 0;
int i = 0;
double v = 0;
double feaserrold = 0;
double feaserrnew = 0;
double theta = 0;
int n = 0;
int i_ = 0;
n = state.n;
//
// Rebuild basis accroding to current active set.
// We call SASRebuildBasis() to make sure that fields of SAS
// store up to date values.
//
sactivesets.sasrebuildbasis(state.sas);
//
// Allocate temporaries.
//
apserv.rvectorsetlengthatleast(ref tmp, Math.Max(n, state.sas.basissize));
apserv.bvectorsetlengthatleast(ref tmpb, n);
apserv.rvectorsetlengthatleast(ref lagrangec, state.sas.basissize);
//
// Prepare model
//
for(i=0; i<=state.sas.basissize-1; i++)
{
tmp[i] = state.sas.pbasis[i,n];
}
theta = 100.0*anorm;
for(i=0; i<=n-1; i++)
{
if( state.sas.activeset[i]>0 )
{
tmpb[i] = true;
}
else
{
tmpb[i] = false;
}
}
cqmodels.cqmsetactiveset(a, state.sas.xc, tmpb);
cqmodels.cqmsetq(a, state.sas.pbasis, tmp, state.sas.basissize, theta);
//
// Iterate until optimal values of Lagrange multipliers are found
//
for(i=0; i<=state.sas.basissize-1; i++)
{
lagrangec[i] = 0;
}
feaserrnew = math.maxrealnumber;
result = true;
for(itidx=1; itidx<=maxlagrangeits; itidx++)
{
//
// Generate right part B using linear term and current
// estimate of the Lagrange multipliers.
//.........这里部分代码省略.........
示例13: conditions
/*************************************************************************
This function sets scaling coefficients.
ALGLIB optimizers use scaling matrices to test stopping conditions (step
size and gradient are scaled before comparison with tolerances). Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function
BLEIC-based QP solver uses scale for two purposes:
* to evaluate stopping conditions
* for preconditioning of the underlying BLEIC solver
INPUT PARAMETERS:
State - structure stores algorithm state
S - array[N], non-zero scaling coefficients
S[i] may be negative, sign doesn't matter.
-- ALGLIB --
Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetscale(minqpstate state,
double[] s)
{
int i = 0;
alglib.ap.assert(alglib.ap.len(s)>=state.n, "MinQPSetScale: Length(S)<N");
for(i=0; i<=state.n-1; i++)
{
alglib.ap.assert(math.isfinite(s[i]), "MinQPSetScale: S contains infinite or NAN elements");
alglib.ap.assert((double)(s[i])!=(double)(0), "MinQPSetScale: S contains zero elements");
state.s[i] = Math.Abs(s[i]);
}
}
示例14: make_copy
public override alglib.apobject make_copy()
{
minqpstate _result = new minqpstate();
_result.n = n;
_result.qqpsettingsuser = (qqpsolver.qqpsettings)qqpsettingsuser.make_copy();
_result.qqpsettingscurrent = (qqpsolver.qqpsettings)qqpsettingscurrent.make_copy();
_result.qpbleicsettingsuser = (qpbleicsolver.qpbleicsettings)qpbleicsettingsuser.make_copy();
_result.qpbleicsettingscurrent = (qpbleicsolver.qpbleicsettings)qpbleicsettingscurrent.make_copy();
_result.algokind = algokind;
_result.akind = akind;
_result.a = (cqmodels.convexquadraticmodel)a.make_copy();
_result.sparsea = (sparse.sparsematrix)sparsea.make_copy();
_result.sparseaupper = sparseaupper;
_result.absamax = absamax;
_result.absasum = absasum;
_result.absasum2 = absasum2;
_result.b = (double[])b.Clone();
_result.bndl = (double[])bndl.Clone();
_result.bndu = (double[])bndu.Clone();
_result.s = (double[])s.Clone();
_result.havebndl = (bool[])havebndl.Clone();
_result.havebndu = (bool[])havebndu.Clone();
_result.xorigin = (double[])xorigin.Clone();
_result.startx = (double[])startx.Clone();
_result.havex = havex;
_result.cleic = (double[,])cleic.Clone();
_result.nec = nec;
_result.nic = nic;
_result.xs = (double[])xs.Clone();
_result.repinneriterationscount = repinneriterationscount;
_result.repouteriterationscount = repouteriterationscount;
_result.repncholesky = repncholesky;
_result.repnmv = repnmv;
_result.repterminationtype = repterminationtype;
_result.tmp0 = (double[])tmp0.Clone();
_result.qpbleicfirstcall = qpbleicfirstcall;
_result.qpbleicbuf = (qpbleicsolver.qpbleicbuffers)qpbleicbuf.make_copy();
_result.qqpbuf = (qqpsolver.qqpbuffers)qqpbuf.make_copy();
_result.qpcholeskybuf = (qpcholeskysolver.qpcholeskybuffers)qpcholeskybuf.make_copy();
_result.estimator = (normestimator.normestimatorstate)estimator.make_copy();
return _result;
}
示例15: minqpsetalgocholesky
/*************************************************************************
This function tells solver to use Cholesky-based algorithm. This algorithm
was deprecated in ALGLIB 3.9.0 because its performance is inferior to that
of BLEIC-QP or QuickQP on high-dimensional problems. Furthermore, it
supports only dense convex QP problems.
This solver is no longer active by default.
We recommend you to switch to BLEIC-QP or QuickQP solver.
INPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void minqpsetalgocholesky(minqpstate state)
{
state.algokind = 1;
}