本文整理汇总了C#中lsfitstate类的典型用法代码示例。如果您正苦于以下问题:C# lsfitstate类的具体用法?C# lsfitstate怎么用?C# lsfitstate使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
lsfitstate类属于命名空间,在下文中一共展示了lsfitstate类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: lsfitcreatefgh
public static void lsfitcreatefgh(double[,] x, double[] y, double[] c, out lsfitstate state)
{
int n;
int m;
int k;
if( (ap.rows(x)!=ap.len(y)))
throw new alglibexception("Error while calling 'lsfitcreatefgh': looks like one of arguments has wrong size");
state = new lsfitstate();
n = ap.rows(x);
m = ap.cols(x);
k = ap.len(c);
lsfit.lsfitcreatefgh(x, y, c, n, m, k, state.innerobj);
return;
}
示例2: LSFitNonlinearWFGH
/*************************************************************************
Nonlinear least squares fitting using gradient/Hessian without individual
weights. See LSFitNonlinearWFGH() for more information.
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitnonlinearfgh(ref double[,] x,
ref double[] y,
ref double[] c,
int n,
int m,
int k,
ref lsfitstate state)
{
int i = 0;
int i_ = 0;
state.n = n;
state.m = m;
state.k = k;
lsfitnonlinearsetcond(ref state, 0.0, 0.0, 0);
lsfitnonlinearsetstpmax(ref state, 0.0);
state.cheapfg = true;
state.havehess = true;
if( n>=1 & m>=1 & k>=1 )
{
state.taskx = new double[n, m];
state.tasky = new double[n];
state.w = new double[n];
state.c = new double[k];
for(i_=0; i_<=k-1;i_++)
{
state.c[i_] = c[i_];
}
for(i=0; i<=n-1; i++)
{
for(i_=0; i_<=m-1;i_++)
{
state.taskx[i,i_] = x[i,i_];
}
state.tasky[i] = y[i];
state.w[i] = 1;
}
}
state.rstate.ia = new int[4+1];
state.rstate.ra = new double[1+1];
state.rstate.stage = -1;
}
示例3: exp
/*************************************************************************
This function sets maximum step length
INPUT PARAMETERS:
State - structure which stores algorithm state between calls and
which is used for reverse communication. Must be
initialized with LSFitNonLinearCreate???()
StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't
want to limit step length.
Use this subroutine when you optimize target function which contains exp()
or other fast growing functions, and optimization algorithm makes too
large steps which leads to overflow. This function allows us to reject
steps that are too large (and therefore expose us to the possible
overflow) without actually calculating function value at the x+stp*d.
NOTE: non-zero StpMax leads to moderate performance degradation because
intermediate step of preconditioned L-BFGS optimization is incompatible
with limits on step size.
-- ALGLIB --
Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
public static void lsfitnonlinearsetstpmax(ref lsfitstate state,
double stpmax)
{
System.Diagnostics.Debug.Assert((double)(stpmax)>=(double)(0), "LSFitNonlinearSetStpMax: StpMax<0!");
state.stpmax = stpmax;
}
示例4: LSFitFit
/*************************************************************************
Nonlinear least squares fitting results.
Called after return from LSFitFit().
INPUT PARAMETERS:
State - algorithm state
OUTPUT PARAMETERS:
Info - completion code:
* -7 gradient verification failed.
See LSFitSetGradientCheck() for more information.
* 1 relative function improvement is no more than
EpsF.
* 2 relative step is no more than EpsX.
* 4 gradient norm is no more than EpsG
* 5 MaxIts steps was taken
* 7 stopping conditions are too stringent,
further improvement is impossible
C - array[0..K-1], solution
Rep - optimization report. On success following fields are set:
* R2 non-adjusted coefficient of determination
(non-weighted)
* RMSError rms error on the (X,Y).
* AvgError average error on the (X,Y).
* AvgRelError average relative error on the non-zero Y
* MaxError maximum error
NON-WEIGHTED ERRORS ARE CALCULATED
* WRMSError weighted rms error on the (X,Y).
ERRORS IN PARAMETERS
This solver also calculates different kinds of errors in parameters and
fills corresponding fields of report:
* Rep.CovPar covariance matrix for parameters, array[K,K].
* Rep.ErrPar errors in parameters, array[K],
errpar = sqrt(diag(CovPar))
* Rep.ErrCurve vector of fit errors - standard deviations of empirical
best-fit curve from "ideal" best-fit curve built with
infinite number of samples, array[N].
errcurve = sqrt(diag(J*CovPar*J')),
where J is Jacobian matrix.
* Rep.Noise vector of per-point estimates of noise, array[N]
IMPORTANT: errors in parameters are calculated without taking into
account boundary/linear constraints! Presence of constraints
changes distribution of errors, but there is no easy way to
account for constraints when you calculate covariance matrix.
NOTE: noise in the data is estimated as follows:
* for fitting without user-supplied weights all points are
assumed to have same level of noise, which is estimated from
the data
* for fitting with user-supplied weights we assume that noise
level in I-th point is inversely proportional to Ith weight.
Coefficient of proportionality is estimated from the data.
NOTE: we apply small amount of regularization when we invert squared
Jacobian and calculate covariance matrix. It guarantees that
algorithm won't divide by zero during inversion, but skews
error estimates a bit (fractional error is about 10^-9).
However, we believe that this difference is insignificant for
all practical purposes except for the situation when you want
to compare ALGLIB results with "reference" implementation up
to the last significant digit.
NOTE: covariance matrix is estimated using correction for degrees
of freedom (covariances are divided by N-M instead of dividing
by N).
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitresults(lsfitstate state,
ref int info,
ref double[] c,
lsfitreport rep)
{
int i = 0;
int j = 0;
int i_ = 0;
info = 0;
c = new double[0];
clearreport(rep);
info = state.repterminationtype;
rep.varidx = state.repvaridx;
if( info>0 )
{
c = new double[state.k];
for(i_=0; i_<=state.k-1;i_++)
{
c[i_] = state.c[i_];
}
rep.rmserror = state.reprmserror;
rep.wrmserror = state.repwrmserror;
rep.avgerror = state.repavgerror;
rep.avgrelerror = state.repavgrelerror;
//.........这里部分代码省略.........
示例5: LSFitNonlinearIteration
/*************************************************************************
Nonlinear least squares fitting results.
Called after LSFitNonlinearIteration() returned False.
INPUT PARAMETERS:
State - algorithm state (used by LSFitNonlinearIteration).
OUTPUT PARAMETERS:
Info - completetion code:
* -1 incorrect parameters were specified
* 1 relative function improvement is no more than
EpsF.
* 2 relative step is no more than EpsX.
* 4 gradient norm is no more than EpsG
* 5 MaxIts steps was taken
C - array[0..K-1], solution
Rep - optimization report. Following fields are set:
* Rep.TerminationType completetion code:
* RMSError rms error on the (X,Y).
* AvgError average error on the (X,Y).
* AvgRelError average relative error on the non-zero Y
* MaxError maximum error
NON-WEIGHTED ERRORS ARE CALCULATED
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitnonlinearresults(ref lsfitstate state,
ref int info,
ref double[] c,
ref lsfitreport rep)
{
int i_ = 0;
info = state.repterminationtype;
if( info>0 )
{
c = new double[state.k];
for(i_=0; i_<=state.k-1;i_++)
{
c[i_] = state.c[i_];
}
rep.rmserror = state.reprmserror;
rep.avgerror = state.repavgerror;
rep.avgrelerror = state.repavgrelerror;
rep.maxerror = state.repmaxerror;
}
}
示例6: lsfitsetxrep
/*************************************************************************
This function turns on/off reporting.
INPUT PARAMETERS:
State - structure which stores algorithm state
NeedXRep- whether iteration reports are needed or not
When reports are needed, State.C (current parameters) and State.F (current
value of fitting function) are reported.
-- ALGLIB --
Copyright 15.08.2010 by Bochkanov Sergey
*************************************************************************/
public static void lsfitsetxrep(lsfitstate state,
bool needxrep)
{
state.xrep = needxrep;
}
示例7: default
/*************************************************************************
This function sets boundary constraints for underlying optimizer
Boundary constraints are inactive by default (after initial creation).
They are preserved until explicitly turned off with another SetBC() call.
INPUT PARAMETERS:
State - structure stores algorithm state
BndL - lower bounds, array[K].
If some (all) variables are unbounded, you may specify
very small number or -INF (latter is recommended because
it will allow solver to use better algorithm).
BndU - upper bounds, array[K].
If some (all) variables are unbounded, you may specify
very large number or +INF (latter is recommended because
it will allow solver to use better algorithm).
NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].
NOTE 2: unlike other constrained optimization algorithms, this solver has
following useful properties:
* bound constraints are always satisfied exactly
* function is evaluated only INSIDE area specified by bound constraints
-- ALGLIB --
Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
public static void lsfitsetbc(lsfitstate state,
double[] bndl,
double[] bndu)
{
int i = 0;
int k = 0;
k = state.k;
alglib.ap.assert(alglib.ap.len(bndl)>=k, "LSFitSetBC: Length(BndL)<K");
alglib.ap.assert(alglib.ap.len(bndu)>=k, "LSFitSetBC: Length(BndU)<K");
for(i=0; i<=k-1; i++)
{
alglib.ap.assert(math.isfinite(bndl[i]) || Double.IsNegativeInfinity(bndl[i]), "LSFitSetBC: BndL contains NAN or +INF");
alglib.ap.assert(math.isfinite(bndu[i]) || Double.IsPositiveInfinity(bndu[i]), "LSFitSetBC: BndU contains NAN or -INF");
if( math.isfinite(bndl[i]) && math.isfinite(bndu[i]) )
{
alglib.ap.assert((double)(bndl[i])<=(double)(bndu[i]), "LSFitSetBC: BndL[i]>BndU[i]");
}
state.bndl[i] = bndl[i];
state.bndu[i] = bndu[i];
}
}
示例8: LSFitFit
/*************************************************************************
Nonlinear least squares fitting results.
Called after return from LSFitFit().
INPUT PARAMETERS:
State - algorithm state
OUTPUT PARAMETERS:
Info - completetion code:
* 1 relative function improvement is no more than
EpsF.
* 2 relative step is no more than EpsX.
* 4 gradient norm is no more than EpsG
* 5 MaxIts steps was taken
* 7 stopping conditions are too stringent,
further improvement is impossible
C - array[0..K-1], solution
Rep - optimization report. Following fields are set:
* Rep.TerminationType completetion code:
* RMSError rms error on the (X,Y).
* AvgError average error on the (X,Y).
* AvgRelError average relative error on the non-zero Y
* MaxError maximum error
NON-WEIGHTED ERRORS ARE CALCULATED
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitresults(lsfitstate state, out int info, out double[] c, out lsfitreport rep)
{
info = 0;
c = new double[0];
rep = new lsfitreport();
lsfit.lsfitresults(state.innerobj, ref info, ref c, rep.innerobj);
return;
}
示例9: min
/*************************************************************************
Nonlinear least squares fitting using gradient/Hessian, without individial
weights.
Nonlinear task min(F(c)) is solved, where
F(c) = ((f(c,x[0])-y[0]))^2 + ... + ((f(c,x[n-1])-y[n-1]))^2,
* N is a number of points,
* M is a dimension of a space points belong to,
* K is a dimension of a space of parameters being fitted,
* x is a set of N points, each of them is an M-dimensional vector,
* c is a K-dimensional vector of parameters being fitted
This subroutine uses f(c,x[i]), its gradient and its Hessian.
INPUT PARAMETERS:
X - array[0..N-1,0..M-1], points (one row = one point)
Y - array[0..N-1], function values.
C - array[0..K-1], initial approximation to the solution,
N - number of points, N>1
M - dimension of space
K - number of parameters being fitted
OUTPUT PARAMETERS:
State - structure which stores algorithm state
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitcreatefgh(double[,] x,
double[] y,
double[] c,
int n,
int m,
int k,
lsfitstate state)
{
int i = 0;
int i_ = 0;
ap.assert(n>=1, "LSFitCreateFGH: N<1!");
ap.assert(m>=1, "LSFitCreateFGH: M<1!");
ap.assert(k>=1, "LSFitCreateFGH: K<1!");
ap.assert(ap.len(c)>=k, "LSFitCreateFGH: length(C)<K!");
ap.assert(apserv.isfinitevector(c, k), "LSFitCreateFGH: C contains infinite or NaN values!");
ap.assert(ap.len(y)>=n, "LSFitCreateFGH: length(Y)<N!");
ap.assert(apserv.isfinitevector(y, n), "LSFitCreateFGH: Y contains infinite or NaN values!");
ap.assert(ap.rows(x)>=n, "LSFitCreateFGH: rows(X)<N!");
ap.assert(ap.cols(x)>=m, "LSFitCreateFGH: cols(X)<M!");
ap.assert(apserv.apservisfinitematrix(x, n, m), "LSFitCreateFGH: X contains infinite or NaN values!");
state.n = n;
state.m = m;
state.k = k;
lsfitsetcond(state, 0.0, 0.0, 0);
lsfitsetstpmax(state, 0.0);
lsfitsetxrep(state, false);
state.taskx = new double[n, m];
state.tasky = new double[n];
state.w = new double[n];
state.c = new double[k];
state.h = new double[k, k];
state.x = new double[m];
state.g = new double[k];
for(i_=0; i_<=k-1;i_++)
{
state.c[i_] = c[i_];
}
for(i=0; i<=n-1; i++)
{
for(i_=0; i_<=m-1;i_++)
{
state.taskx[i,i_] = x[i,i_];
}
state.tasky[i] = y[i];
state.w[i] = 1;
}
minlm.minlmcreatefgh(k, state.c, state.optstate);
lsfitclearrequestfields(state);
state.rstate.ia = new int[4+1];
state.rstate.ra = new double[1+1];
state.rstate.stage = -1;
}
示例10: lsfititeration
/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
public static bool lsfititeration(lsfitstate state)
{
bool result = lsfit.lsfititeration(state.innerobj);
return result;
}
示例11: lsfitfit
public static void lsfitfit(lsfitstate state, ndimensional_pfunc func, ndimensional_pgrad grad, ndimensional_phess hess, ndimensional_rep rep, object obj)
{
if( func==null )
throw new alglibexception("ALGLIB: error in 'lsfitfit()' (func is null)");
if( grad==null )
throw new alglibexception("ALGLIB: error in 'lsfitfit()' (grad is null)");
if( hess==null )
throw new alglibexception("ALGLIB: error in 'lsfitfit()' (hess is null)");
while( alglib.lsfititeration(state) )
{
if( state.needf )
{
func(state.c, state.x, ref state.innerobj.f, obj);
continue;
}
if( state.needfg )
{
grad(state.c, state.x, ref state.innerobj.f, state.innerobj.g, obj);
continue;
}
if( state.needfgh )
{
hess(state.c, state.x, ref state.innerobj.f, state.innerobj.g, state.innerobj.h, obj);
continue;
}
if( state.innerobj.xupdated )
{
if( rep!=null )
rep(state.innerobj.x, state.innerobj.f, obj);
continue;
}
throw new alglibexception("ALGLIB: error in 'lsfitfit' (some derivatives were not provided?)");
}
}
示例12: lsfitsetxrep
/*************************************************************************
This function turns on/off reporting.
INPUT PARAMETERS:
State - structure which stores algorithm state
NeedXRep- whether iteration reports are needed or not
When reports are needed, State.C (current parameters) and State.F (current
value of fitting function) are reported.
-- ALGLIB --
Copyright 15.08.2010 by Bochkanov Sergey
*************************************************************************/
public static void lsfitsetxrep(lsfitstate state, bool needxrep)
{
lsfit.lsfitsetxrep(state.innerobj, needxrep);
return;
}
示例13: exp
/*************************************************************************
This function sets maximum step length
INPUT PARAMETERS:
State - structure which stores algorithm state
StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't
want to limit step length.
Use this subroutine when you optimize target function which contains exp()
or other fast growing functions, and optimization algorithm makes too
large steps which leads to overflow. This function allows us to reject
steps that are too large (and therefore expose us to the possible
overflow) without actually calculating function value at the x+stp*d.
NOTE: non-zero StpMax leads to moderate performance degradation because
intermediate step of preconditioned L-BFGS optimization is incompatible
with limits on step size.
-- ALGLIB --
Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
public static void lsfitsetstpmax(lsfitstate state, double stpmax)
{
lsfit.lsfitsetstpmax(state.innerobj, stpmax);
return;
}
示例14: selection
/*************************************************************************
Stopping conditions for nonlinear least squares fitting.
INPUT PARAMETERS:
State - structure which stores algorithm state
EpsF - stopping criterion. Algorithm stops if
|F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
EpsX - stopping criterion. Algorithm stops if
|X(k+1)-X(k)| <= EpsX*(1+|X(k)|)
MaxIts - stopping criterion. Algorithm stops after MaxIts iterations.
MaxIts=0 means no stopping criterion.
NOTE
Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
stopping criterion selection (according to the scheme used by MINLM unit).
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitsetcond(lsfitstate state, double epsf, double epsx, int maxits)
{
lsfit.lsfitsetcond(state.innerobj, epsf, epsx, maxits);
return;
}
示例15: counted
/*************************************************************************
Stopping conditions for nonlinear least squares fitting.
INPUT PARAMETERS:
State - structure which stores algorithm state
EpsF - stopping criterion. Algorithm stops if
|F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1}
EpsX - >=0
The subroutine finishes its work if on k+1-th iteration
the condition |v|<=EpsX is fulfilled, where:
* |.| means Euclidian norm
* v - scaled step vector, v[i]=dx[i]/s[i]
* dx - ste pvector, dx=X(k+1)-X(k)
* s - scaling coefficients set by LSFitSetScale()
MaxIts - maximum number of iterations. If MaxIts=0, the number of
iterations is unlimited. Only Levenberg-Marquardt
iterations are counted (L-BFGS/CG iterations are NOT
counted because their cost is very low compared to that of
LM).
NOTE
Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic
stopping criterion selection (according to the scheme used by MINLM unit).
-- ALGLIB --
Copyright 17.08.2009 by Bochkanov Sergey
*************************************************************************/
public static void lsfitsetcond(lsfitstate state,
double epsf,
double epsx,
int maxits)
{
alglib.ap.assert(math.isfinite(epsf), "LSFitSetCond: EpsF is not finite!");
alglib.ap.assert((double)(epsf)>=(double)(0), "LSFitSetCond: negative EpsF!");
alglib.ap.assert(math.isfinite(epsx), "LSFitSetCond: EpsX is not finite!");
alglib.ap.assert((double)(epsx)>=(double)(0), "LSFitSetCond: negative EpsX!");
alglib.ap.assert(maxits>=0, "LSFitSetCond: negative MaxIts!");
state.epsf = epsf;
state.epsx = epsx;
state.maxits = maxits;
}