当前位置: 首页>>代码示例>>C#>>正文


C# linearmodel类代码示例

本文整理汇总了C#中linearmodel的典型用法代码示例。如果您正苦于以下问题:C# linearmodel类的具体用法?C# linearmodel怎么用?C# linearmodel使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


linearmodel类属于命名空间,在下文中一共展示了linearmodel类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: lrinternal

        /*************************************************************************
        Internal linear regression subroutine
        *************************************************************************/
        private static void lrinternal(double[,] xy,
            double[] s,
            int npoints,
            int nvars,
            ref int info,
            linearmodel lm,
            lrreport ar)
        {
            double[,] a = new double[0,0];
            double[,] u = new double[0,0];
            double[,] vt = new double[0,0];
            double[,] vm = new double[0,0];
            double[,] xym = new double[0,0];
            double[] b = new double[0];
            double[] sv = new double[0];
            double[] t = new double[0];
            double[] svi = new double[0];
            double[] work = new double[0];
            int i = 0;
            int j = 0;
            int k = 0;
            int ncv = 0;
            int na = 0;
            int nacv = 0;
            double r = 0;
            double p = 0;
            double epstol = 0;
            lrreport ar2 = new lrreport();
            int offs = 0;
            linearmodel tlm = new linearmodel();
            int i_ = 0;
            int i1_ = 0;

            info = 0;

            epstol = 1000;
            
            //
            // Check for errors in data
            //
            if( npoints<nvars || nvars<1 )
            {
                info = -1;
                return;
            }
            for(i=0; i<=npoints-1; i++)
            {
                if( (double)(s[i])<=(double)(0) )
                {
                    info = -2;
                    return;
                }
            }
            info = 1;
            
            //
            // Create design matrix
            //
            a = new double[npoints-1+1, nvars-1+1];
            b = new double[npoints-1+1];
            for(i=0; i<=npoints-1; i++)
            {
                r = 1/s[i];
                for(i_=0; i_<=nvars-1;i_++)
                {
                    a[i,i_] = r*xy[i,i_];
                }
                b[i] = xy[i,nvars]/s[i];
            }
            
            //
            // Allocate W:
            // W[0]     array size
            // W[1]     version number, 0
            // W[2]     NVars (minus 1, to be compatible with external representation)
            // W[3]     coefficients offset
            //
            lm.w = new double[4+nvars-1+1];
            offs = 4;
            lm.w[0] = 4+nvars;
            lm.w[1] = lrvnum;
            lm.w[2] = nvars-1;
            lm.w[3] = offs;
            
            //
            // Solve problem using SVD:
            //
            // 0. check for degeneracy (different types)
            // 1. A = U*diag(sv)*V'
            // 2. T = b'*U
            // 3. w = SUM((T[i]/sv[i])*V[..,i])
            // 4. cov(wi,wj) = SUM(Vji*Vjk/sv[i]^2,K=1..M)
            //
            // see $15.4 of "Numerical Recipes in C" for more information
            //
            t = new double[nvars-1+1];
            svi = new double[nvars-1+1];
//.........这里部分代码省略.........
开发者ID:lgatto,项目名称:proteowizard,代码行数:101,代码来源:dataanalysis.cs

示例2: lravgrelerror

        /*************************************************************************
        RMS error on the test set

        INPUT PARAMETERS:
            LM      -   linear model
            XY      -   test set
            NPoints -   test set size

        RESULT:
            average relative error.

          -- ALGLIB --
             Copyright 30.08.2008 by Bochkanov Sergey
        *************************************************************************/
        public static double lravgrelerror(linearmodel lm,
            double[,] xy,
            int npoints)
        {
            double result = 0;
            int i = 0;
            int k = 0;
            double v = 0;
            int offs = 0;
            int nvars = 0;
            int i_ = 0;
            int i1_ = 0;

            alglib.ap.assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
            nvars = (int)Math.Round(lm.w[2]);
            offs = (int)Math.Round(lm.w[3]);
            result = 0;
            k = 0;
            for(i=0; i<=npoints-1; i++)
            {
                if( (double)(xy[i,nvars])!=(double)(0) )
                {
                    i1_ = (offs)-(0);
                    v = 0.0;
                    for(i_=0; i_<=nvars-1;i_++)
                    {
                        v += xy[i,i_]*lm.w[i_+i1_];
                    }
                    v = v+lm.w[offs+nvars];
                    result = result+Math.Abs((v-xy[i,nvars])/xy[i,nvars]);
                    k = k+1;
                }
            }
            if( k!=0 )
            {
                result = result/k;
            }
            return result;
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:53,代码来源:dataanalysis.cs

示例3: lrcopy

        /*************************************************************************
        Copying of LinearModel strucure

        INPUT PARAMETERS:
            LM1 -   original

        OUTPUT PARAMETERS:
            LM2 -   copy

          -- ALGLIB --
             Copyright 15.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lrcopy(linearmodel lm1,
            linearmodel lm2)
        {
            int k = 0;
            int i_ = 0;

            k = (int)Math.Round(lm1.w[0]);
            lm2.w = new double[k-1+1];
            for(i_=0; i_<=k-1;i_++)
            {
                lm2.w[i_] = lm1.w[i_];
            }
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:25,代码来源:dataanalysis.cs

示例4: lrprocess

        /*************************************************************************
        Procesing

        INPUT PARAMETERS:
            LM      -   linear model
            X       -   input vector,  array[0..NVars-1].

        Result:
            value of linear model regression estimate

          -- ALGLIB --
             Copyright 03.09.2008 by Bochkanov Sergey
        *************************************************************************/
        public static double lrprocess(linearmodel lm,
            double[] x)
        {
            double result = 0;
            double v = 0;
            int offs = 0;
            int nvars = 0;
            int i_ = 0;
            int i1_ = 0;

            alglib.ap.assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
            nvars = (int)Math.Round(lm.w[2]);
            offs = (int)Math.Round(lm.w[3]);
            i1_ = (offs)-(0);
            v = 0.0;
            for(i_=0; i_<=nvars-1;i_++)
            {
                v += x[i_]*lm.w[i_+i1_];
            }
            result = v+lm.w[offs+nvars];
            return result;
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:35,代码来源:dataanalysis.cs

示例5: lrrmserror

        /*************************************************************************
        RMS error on the test set

        INPUT PARAMETERS:
            LM      -   linear model
            XY      -   test set
            NPoints -   test set size

        RESULT:
            root mean square error.

          -- ALGLIB --
             Copyright 30.08.2008 by Bochkanov Sergey
        *************************************************************************/
        public static double lrrmserror(linearmodel lm,
            double[,] xy,
            int npoints)
        {
            double result = 0;
            int i = 0;
            double v = 0;
            int offs = 0;
            int nvars = 0;
            int i_ = 0;
            int i1_ = 0;

            alglib.ap.assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
            nvars = (int)Math.Round(lm.w[2]);
            offs = (int)Math.Round(lm.w[3]);
            result = 0;
            for(i=0; i<=npoints-1; i++)
            {
                i1_ = (offs)-(0);
                v = 0.0;
                for(i_=0; i_<=nvars-1;i_++)
                {
                    v += xy[i,i_]*lm.w[i_+i1_];
                }
                v = v+lm.w[offs+nvars];
                result = result+math.sqr(v-xy[i,nvars]);
            }
            result = Math.Sqrt(result/npoints);
            return result;
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:44,代码来源:dataanalysis.cs

示例6: term

        /*************************************************************************
        Unpacks coefficients of linear model.

        INPUT PARAMETERS:
            LM          -   linear model in ALGLIB format

        OUTPUT PARAMETERS:
            V           -   coefficients, array[0..NVars]
                            constant term (intercept) is stored in the V[NVars].
            NVars       -   number of independent variables (one less than number
                            of coefficients)

          -- ALGLIB --
             Copyright 30.08.2008 by Bochkanov Sergey
        *************************************************************************/
        public static void lrunpack(linearmodel lm,
            ref double[] v,
            ref int nvars)
        {
            int offs = 0;
            int i_ = 0;
            int i1_ = 0;

            v = new double[0];
            nvars = 0;

            alglib.ap.assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
            nvars = (int)Math.Round(lm.w[2]);
            offs = (int)Math.Round(lm.w[3]);
            v = new double[nvars+1];
            i1_ = (offs) - (0);
            for(i_=0; i_<=nvars;i_++)
            {
                v[i_] = lm.w[i_+i1_];
            }
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:36,代码来源:dataanalysis.cs

示例7: format

        /*************************************************************************
        "Packs" coefficients and creates linear model in ALGLIB format (LRUnpack
        reversed).

        INPUT PARAMETERS:
            V           -   coefficients, array[0..NVars]
            NVars       -   number of independent variables

        OUTPUT PAREMETERS:
            LM          -   linear model.

          -- ALGLIB --
             Copyright 30.08.2008 by Bochkanov Sergey
        *************************************************************************/
        public static void lrpack(double[] v,
            int nvars,
            linearmodel lm)
        {
            int offs = 0;
            int i_ = 0;
            int i1_ = 0;

            lm.w = new double[4+nvars+1];
            offs = 4;
            lm.w[0] = 4+nvars+1;
            lm.w[1] = lrvnum;
            lm.w[2] = nvars;
            lm.w[3] = offs;
            i1_ = (0) - (offs);
            for(i_=offs; i_<=offs+nvars;i_++)
            {
                lm.w[i_] = v[i_+i1_];
            }
        }
开发者ID:lgatto,项目名称:proteowizard,代码行数:34,代码来源:dataanalysis.cs

示例8: A

        /*************************************************************************
        Like LRBuildS, but builds model

            Y = A(0)*X[0] + ... + A(N-1)*X[N-1]

        i.e. with zero constant term.

          -- ALGLIB --
             Copyright 30.10.2008 by Bochkanov Sergey
        *************************************************************************/
        public static void lrbuildzs(double[,] xy,
            double[] s,
            int npoints,
            int nvars,
            ref int info,
            linearmodel lm,
            lrreport ar)
        {
            double[,] xyi = new double[0,0];
            double[] x = new double[0];
            double[] c = new double[0];
            int i = 0;
            int j = 0;
            double v = 0;
            int offs = 0;
            double mean = 0;
            double variance = 0;
            double skewness = 0;
            double kurtosis = 0;
            int i_ = 0;

            info = 0;

            
            //
            // Test parameters
            //
            if( npoints<=nvars+1 || nvars<1 )
            {
                info = -1;
                return;
            }
            
            //
            // Copy data, add one more column (constant term)
            //
            xyi = new double[npoints-1+1, nvars+1+1];
            for(i=0; i<=npoints-1; i++)
            {
                for(i_=0; i_<=nvars-1;i_++)
                {
                    xyi[i,i_] = xy[i,i_];
                }
                xyi[i,nvars] = 0;
                xyi[i,nvars+1] = xy[i,nvars];
            }
            
            //
            // Standartization: unusual scaling
            //
            x = new double[npoints-1+1];
            c = new double[nvars-1+1];
            for(j=0; j<=nvars-1; j++)
            {
                for(i_=0; i_<=npoints-1;i_++)
                {
                    x[i_] = xy[i_,j];
                }
                basestat.samplemoments(x, npoints, ref mean, ref variance, ref skewness, ref kurtosis);
                if( (double)(Math.Abs(mean))>(double)(Math.Sqrt(variance)) )
                {
                    
                    //
                    // variation is relatively small, it is better to
                    // bring mean value to 1
                    //
                    c[j] = mean;
                }
                else
                {
                    
                    //
                    // variation is large, it is better to bring variance to 1
                    //
                    if( (double)(variance)==(double)(0) )
                    {
                        variance = 1;
                    }
                    c[j] = Math.Sqrt(variance);
                }
                for(i=0; i<=npoints-1; i++)
                {
                    xyi[i,j] = xyi[i,j]/c[j];
                }
            }
            
            //
            // Internal processing
            //
            lrinternal(xyi, s, npoints, nvars+1, ref info, lm, ar);
//.........这里部分代码省略.........
开发者ID:lgatto,项目名称:proteowizard,代码行数:101,代码来源:dataanalysis.cs

示例9: deviations

        /*************************************************************************
        Linear regression

        Variant of LRBuild which uses vector of standatd deviations (errors in
        function values).

        INPUT PARAMETERS:
            XY          -   training set, array [0..NPoints-1,0..NVars]:
                            * NVars columns - independent variables
                            * last column - dependent variable
            S           -   standard deviations (errors in function values)
                            array[0..NPoints-1], S[i]>0.
            NPoints     -   training set size, NPoints>NVars+1
            NVars       -   number of independent variables

        OUTPUT PARAMETERS:
            Info        -   return code:
                            * -255, in case of unknown internal error
                            * -4, if internal SVD subroutine haven't converged
                            * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
                            * -2, if S[I]<=0
                            *  1, if subroutine successfully finished
            LM          -   linear model in the ALGLIB format. Use subroutines of
                            this unit to work with the model.
            AR          -   additional results


          -- ALGLIB --
             Copyright 02.08.2008 by Bochkanov Sergey
        *************************************************************************/
        public static void lrbuilds(double[,] xy,
            double[] s,
            int npoints,
            int nvars,
            ref int info,
            linearmodel lm,
            lrreport ar)
        {
            double[,] xyi = new double[0,0];
            double[] x = new double[0];
            double[] means = new double[0];
            double[] sigmas = new double[0];
            int i = 0;
            int j = 0;
            double v = 0;
            int offs = 0;
            double mean = 0;
            double variance = 0;
            double skewness = 0;
            double kurtosis = 0;
            int i_ = 0;

            info = 0;

            
            //
            // Test parameters
            //
            if( npoints<=nvars+1 || nvars<1 )
            {
                info = -1;
                return;
            }
            
            //
            // Copy data, add one more column (constant term)
            //
            xyi = new double[npoints-1+1, nvars+1+1];
            for(i=0; i<=npoints-1; i++)
            {
                for(i_=0; i_<=nvars-1;i_++)
                {
                    xyi[i,i_] = xy[i,i_];
                }
                xyi[i,nvars] = 1;
                xyi[i,nvars+1] = xy[i,nvars];
            }
            
            //
            // Standartization
            //
            x = new double[npoints-1+1];
            means = new double[nvars-1+1];
            sigmas = new double[nvars-1+1];
            for(j=0; j<=nvars-1; j++)
            {
                for(i_=0; i_<=npoints-1;i_++)
                {
                    x[i_] = xy[i_,j];
                }
                basestat.samplemoments(x, npoints, ref mean, ref variance, ref skewness, ref kurtosis);
                means[j] = mean;
                sigmas[j] = Math.Sqrt(variance);
                if( (double)(sigmas[j])==(double)(0) )
                {
                    sigmas[j] = 1;
                }
                for(i=0; i<=npoints-1; i++)
                {
                    xyi[i,j] = (xyi[i,j]-means[j])/sigmas[j];
//.........这里部分代码省略.........
开发者ID:lgatto,项目名称:proteowizard,代码行数:101,代码来源:dataanalysis.cs

示例10: make_copy

 public override alglib.apobject make_copy()
 {
     linearmodel _result = new linearmodel();
     _result.w = (double[])w.Clone();
     return _result;
 }
开发者ID:Kerbas-ad-astra,项目名称:MechJeb2,代码行数:6,代码来源:dataanalysis.cs

示例11: lrunserialize

        /*************************************************************************
        Unserialization of DecisionForest strucure

        INPUT PARAMETERS:
            RA      -   real array which stores decision forest

        OUTPUT PARAMETERS:
            LM      -   unserialized structure

          -- ALGLIB --
             Copyright 15.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lrunserialize(ref double[] ra,
            ref linearmodel lm)
        {
            int i_ = 0;
            int i1_ = 0;

            System.Diagnostics.Debug.Assert((int)Math.Round(ra[0])==lrvnum, "LRUnserialize: incorrect array!");
            lm.w = new double[(int)Math.Round(ra[1])-1+1];
            i1_ = (1) - (0);
            for(i_=0; i_<=(int)Math.Round(ra[1])-1;i_++)
            {
                lm.w[i_] = ra[i_+i1_];
            }
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:26,代码来源:linreg.cs

示例12: lrserialize

        /*************************************************************************
        Serialization of LinearModel strucure

        INPUT PARAMETERS:
            LM      -   original

        OUTPUT PARAMETERS:
            RA      -   array of real numbers which stores model,
                        array[0..RLen-1]
            RLen    -   RA lenght

          -- ALGLIB --
             Copyright 15.03.2009 by Bochkanov Sergey
        *************************************************************************/
        public static void lrserialize(ref linearmodel lm,
            ref double[] ra,
            ref int rlen)
        {
            int i_ = 0;
            int i1_ = 0;

            rlen = (int)Math.Round(lm.w[0])+1;
            ra = new double[rlen-1+1];
            ra[0] = lrvnum;
            i1_ = (0) - (1);
            for(i_=1; i_<=rlen-1;i_++)
            {
                ra[i_] = lm.w[i_+i1_];
            }
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:30,代码来源:linreg.cs

示例13: lravgerror

        /*************************************************************************
        Average error on the test set

        INPUT PARAMETERS:
            LM      -   linear model
            XY      -   test set
            NPoints -   test set size

        RESULT:
            average error.

          -- ALGLIB --
             Copyright 30.08.2008 by Bochkanov Sergey
        *************************************************************************/
        public static double lravgerror(ref linearmodel lm,
            ref double[,] xy,
            int npoints)
        {
            double result = 0;
            int i = 0;
            double v = 0;
            int offs = 0;
            int nvars = 0;
            int i_ = 0;
            int i1_ = 0;

            System.Diagnostics.Debug.Assert((int)Math.Round(lm.w[1])==lrvnum, "LINREG: Incorrect LINREG version!");
            nvars = (int)Math.Round(lm.w[2]);
            offs = (int)Math.Round(lm.w[3]);
            result = 0;
            for(i=0; i<=npoints-1; i++)
            {
                i1_ = (offs)-(0);
                v = 0.0;
                for(i_=0; i_<=nvars-1;i_++)
                {
                    v += xy[i,i_]*lm.w[i_+i1_];
                }
                v = v+lm.w[offs+nvars];
                result = result+Math.Abs(v-xy[i,nvars]);
            }
            result = result/npoints;
            return result;
        }
开发者ID:palefacer,项目名称:TelescopeOrientation,代码行数:44,代码来源:linreg.cs


注:本文中的linearmodel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。