本文整理汇总了C#中Z3Provider.MkInt方法的典型用法代码示例。如果您正苦于以下问题:C# Z3Provider.MkInt方法的具体用法?C# Z3Provider.MkInt怎么用?C# Z3Provider.MkInt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Z3Provider
的用法示例。
在下文中一共展示了Z3Provider.MkInt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: RunTestForGivenSize
private static void RunTestForGivenSize(int K)
{
Console.WriteLine(K);
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "two" }, new int[] { 0, 2 }));
Func<int, Expr> beta = (i => Z.MkEq(Z.MkInt(1), Z.MkMod(Z.MkDiv(A.AttrVar, Z.MkInt(1 << (i%32))), Z.MkInt(2))));
Expr e1 = Z.MkEq(Z.MkInt(1), A.AttrVar);
Expr e2 = Z.MkEq(Z.MkInt(2), A.AttrVar);
Expr e3 = Z.MkEq(Z.MkInt(3), A.AttrVar);
var r1 = Z.TT.MkTreeAcceptorRule(A, 0, "zero", e1);
var r2 = Z.TT.MkTreeAcceptorRule(A, 1, "zero", e2);
var r3 = Z.TT.MkTreeAcceptorRule(A, 2, "zero", e3);
var rules = new List<TreeRule>();
rules.Add(r1);
rules.Add(r2);
rules.Add(r3);
for (int i = 0; i < K; i++)
{
rules.Add(Z.TT.MkTreeAcceptorRule(A, 3 * i + 3, "two", beta(i), 3 * i, 3 * i + 2));
rules.Add(Z.TT.MkTreeAcceptorRule(A, 3 * i + 4, "two", beta(i), 3 * i + 1, 3 * i + 2));
rules.Add(Z.TT.MkTreeAcceptorRule(A, 3 * i + 5, "two", beta(i), 3 * i + 2, 3 * i + 2));
}
var T = Z.TT.MkTreeAutomaton(new int[] { 3 * K , 3 * K +1 }, A, A, rules);
var comp = T.Complete();
Util.RunAllAlgorithms(T, comp, K.ToString(), Program.largeAlphabetFile);
}
示例2: getAutomata
internal override Automaton<Expr> getAutomata(Z3Provider z3p, List<string> variables, Expr universe, Expr var, Sort sort)
{
//var bit1 = z3p.Z3.MkInt2Bv(1,
// z3p.MkInt(1));
var bit1 = z3p.Z3.MkInt2BV(BVConst.BVSIZE, (IntExpr)z3p.MkInt(1));
//Sort for pairs (input theory, BV)
var bv = z3p.Z3.MkBitVecSort(BVConst.BVSIZE);
var pairSort = z3p.MkTupleSort(sort, bv);
//Add the representation of the existential variable to the list of variables
var newVariables = variables.ToArray().ToList();
newVariables.Insert(0, variable);
//Compute the DFA for the formula phi
var phiDfa = phi.getAutomata(z3p, newVariables, universe, var, sort);
//Compute the new moves by dropping the last bit of every element in the phiMoves
var newMoves = Automaton<Expr>.Empty.GetMoves().ToList();
foreach (var oldMove in phiDfa.GetMoves())
{
var oldCond = oldMove.Label;
var t = z3p.MkProj(1,var);
//Compute the new conditions
var newCond0 = z3p.ApplySubstitution(oldCond, t,
z3p.Z3.MkBVSHL((BitVecExpr)t, (BitVecExpr)bit1));
var newCond1 = z3p.ApplySubstitution(oldCond, t,
z3p.MkBvAdd(
z3p.Z3.MkBVSHL((BitVecExpr)t, (BitVecExpr)bit1),
bit1));
//Update the new set of moves
newMoves.Add(new Move<Expr>(oldMove.SourceState, oldMove.TargetState, z3p.MkOr(z3p.Simplify(newCond0),z3p.Simplify(newCond1))));
}
//Build the new dfa with the new moves
return Automaton<Expr>.Create(phiDfa.InitialState, phiDfa.GetFinalStates(), newMoves);
//.Determinize(z3p).MinimizeClassical(z3p, int.MaxValue,false);
}
示例3: TestComposition1
public void TestComposition1()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zeroA", "oneA", "twoA" }, new int[] { 0, 1, 2 }));
var B = (Z.TT.MkRankedAlphabet("B", Z.IntSort, new string[] { "zeroB", "oneB", "twoB" }, new int[] { 0, 1, 2 }));
var C = (Z.TT.MkRankedAlphabet("C", Z.IntSort, new string[] { "zeroC", "oneC", "twoC" }, new int[] { 0, 1, 2 }));
//(two (plus 1 x0) (one (plus 1 x0) (q x1)) (one (plus 2 x0) (q x2)))
var b = Z.MkApp(B["twoB"],
Z.MkAdd(Z.MkInt(1), A.AttrVar),
B.MkTree("oneB", Z.MkAdd(Z.MkInt(1), A.AttrVar), A.MkTrans(B, 0, 1)),
B.MkTree("oneB", Z.MkAdd(Z.MkInt(2), A.AttrVar), A.MkTrans(B, 0, 2)));
//(two (plus 1 x0) (zero x0) (one (plus 100 x0) (q x2)))
var b2 = Z.MkApp(B["twoB"],
Z.MkAdd(Z.MkInt(1), A.AttrVar),
B.MkTree("zeroB", A.AttrVar),
B.MkTree("oneB", Z.MkAdd(Z.MkInt(9), A.AttrVar), A.MkTrans(B, 0, 2)));
var rule0 = Z.TT.MkTreeRule(A, B, 0, "zeroA", Z.True, B.MkTree("zeroB", A.AttrVar));
var rule1 = Z.TT.MkTreeRule(A, B, 0, "twoA", Z.MkGt(A.AttrVar, Z.MkInt(0)), b);
var rule2 = Z.TT.MkTreeRule(A, B, 0, "twoA", Z.MkGt(A.AttrVar, Z.MkInt(0)), b2);
var rule3 = Z.TT.MkTreeRule(A, B, 0, "oneA", Z.MkGt(A.AttrVar, Z.MkInt(0)), B.MkTree("oneB", A.AttrVar, A.MkTrans(B, 0, 1)));
var trans1 = Z.TT.MkTreeAutomaton(0, A, B, new TreeRule[] { rule0, rule1, rule2, rule3 });
//(two x0 (one (plus 1 x0) (p x1)) (one (plus 2 x0) (p x2)))
var a = A.MkTree("twoA", C.AttrVar,
A.MkTree("oneA", Z.MkAdd(Z.MkInt(1), C.AttrVar), C.MkTrans(A, 1, 1)),
A.MkTree("oneA", Z.MkAdd(Z.MkInt(2), C.AttrVar), C.MkTrans(A, 1, 2)));
var a2 = A.MkTree("zeroA", C.AttrVar);
var rule4 = Z.TT.MkTreeRule(C, A, 1, "twoC", Z.MkGt(C.AttrVar, Z.MkInt(-2)), a);
var rule5 = Z.TT.MkTreeRule(C, A, 1, "zeroC", Z.MkGt(C.AttrVar, Z.MkInt(-3)), a2);
var trans2 = Z.TT.MkTreeAutomaton(1, C, A, new TreeRule[] { rule4, rule5 });
var trans12 = trans2.Compose(trans1);
var rulesOut = trans12.GetRules(trans12.Root, C["twoC"]);
Assert.AreEqual<int>(2, rulesOut.Count);
var rulesOut2 = trans12.GetRules(trans12.Root, C["zeroC"]);
Assert.AreEqual<int>(1, rulesOut2.Count);
var tin = C.MkTree("twoC", Z.MkInt(55), C.MkTree("zeroC", Z.MkInt(66)), C.MkTree("zeroC", Z.MkInt(77)));
var res = trans12[tin];
Assert.AreEqual<int>(2, res.Length);
Assert.AreEqual<int>(3, trans12.RuleCount);
}
示例4: TestMinimization
private static void TestMinimization(int K)
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "two" }, new int[] { 0, 2 }));
Func<int, Expr> beta = (i => Z.MkEq(Z.MkInt(1), Z.MkMod(Z.MkDiv(A.AttrVar, Z.MkInt(1 << i)), Z.MkInt(2))));
var r0 = Z.TT.MkTreeAcceptorRule(A, 0, "zero", beta(0));
var r1 = Z.TT.MkTreeAcceptorRule(A, 1, "zero", beta(1));
var rules = new List<TreeRule>();
rules.Add(r0);
rules.Add(r1);
for (int i = 0; i < K; i++)
rules.Add(Z.TT.MkTreeAcceptorRule(A, i + 1, "two", beta(i + 1), i, i));
var T = Z.TT.MkTreeAutomaton(K, A, A, rules);
var T1 = T.Determinize();
var T2 = T1.RemoveUselessStates();
var Tmin = T2.Minimize();
Assert.AreNotEqual(T1.StateCount, Tmin.StateCount);
Console.WriteLine("k = {0}, |Q| = {1}, |Delta| = {2}, |Q_d| = {3}, |Delta_d| = {4}, |Q_u| = {5}, |Delta_u| = {6},|Q_m| = {7}, |Delta_m| = {8},",
K, T.StateCount, T.RuleCount, T1.StateCount, T1.RuleCount, T2.StateCount, T2.RuleCount, Tmin.StateCount, Tmin.RuleCount);
}
示例5: TestTreeAutomataMinimization
public void TestTreeAutomataMinimization()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "two" }, new int[] { 0, 2 }));
Func<int,Expr> beta = (i => Z.MkEq(Z.MkInt(1), Z.MkMod(Z.MkDiv(A.AttrVar,Z.MkInt(1<<i)), Z.MkInt(2))));
var r0 = Z.TT.MkTreeAcceptorRule(A, 0, "zero", beta(0));
var r1 = Z.TT.MkTreeAcceptorRule(A, 1, "two", beta(1), 0 ,0 );
var r2 = Z.TT.MkTreeAcceptorRule(A, 2, "two", beta(2), 1, 1);
var T = Z.TT.MkTreeAutomaton(2, A, A, new TreeRule[] { r0, r1, r2 });
var Tmin = T.Minimize();
Assert.AreEqual(T.StateCount, Tmin.StateCount);
}
示例6: TestRegularLookaheadComposition3
public void TestRegularLookaheadComposition3()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "z", "u", "b" }, new int[] { 0, 1, 2 }));
var B = (Z.TT.MkRankedAlphabet("B", Z.IntSort, new string[] { "z", "u", "b" }, new int[] { 0, 1, 2 }));
var C = (Z.TT.MkRankedAlphabet("C", Z.IntSort, new string[] { "z", "u", "b" }, new int[] { 0, 1, 2 }));
var _0 = Z.MkInt(0);
var _1 = Z.MkInt(1);
var _2 = Z.MkInt(2);
var _7 = Z.MkInt(7);
var AB_r0 = Z.TT.MkTreeRule(A, B, 0, "u", Z.MkLe(_0, A.AttrVar), B.MkTree("u", Z.MkAdd(_1, A.AttrVar), A.MkTrans(B, 1, 1)), new int[][] { new int[] { 3, 1 } });
var AB_r1 = Z.TT.MkTreeRule(A, B, 1, "u", Z.MkLe(_1, A.AttrVar), B.MkTree("u", Z.MkAdd(_1, A.AttrVar), A.MkTrans(B, 0, 1)), new int[][] { new int[] { 2, 0 } });
var AB_r2 = Z.TT.MkTreeRule(A, B, 1, "u", Z.MkEq(_2, A.AttrVar), B.MkTree("z", Z.MkAdd(_1, A.AttrVar)));
var AB_q2 = Z.TT.MkTreeRule(A, B, 2, "u", Z.MkGe(_0, A.AttrVar), null, new int[][] { new int[] { 3 } });
var AB_q3a = Z.TT.MkTreeRule(A, B, 3, "u", Z.MkGe(_1, A.AttrVar), null, new int[][] { new int[] { 2 } });
var AB_q3b = Z.TT.MkTreeRule(A, B, 3, "u", Z.MkEq(_2, A.AttrVar), null);
//just accept the input if the attribute is 1, delete the child subtree and return zeroC(1)
var BC_r0 = Z.TT.MkTreeRule(B, C, 0, "u", Z.MkEq(_1, B.AttrVar), C.MkTree("z", Z.MkAdd(_7, B.AttrVar)));
var AB = Z.TT.MkTreeAutomaton(0, A, B, new TreeRule[] { AB_r0, AB_r1, AB_r2, AB_q2, AB_q3a, AB_q3b });
var BC = Z.TT.MkTreeAutomaton(0, B, C, new TreeRule[] { BC_r0 });
var AC = TreeTransducer.ComposeR(AB, BC);
Assert.AreEqual<int>(5, AC.RuleCount);
}
示例7: TestLanguageIntersection
public void TestLanguageIntersection()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
var B = A;
var C = A;
var a_rule2 = A.MkAcceptorRule(0, "two", Z.MkGe(A.AttrVar, Z.MkInt(2)), 0, 0);
var a_rule1 = A.MkAcceptorRule(0, "one", Z.MkGe(A.AttrVar, Z.MkInt(1)), 0);
var a_rule0 = A.MkAcceptorRule(0, "zero", Z.MkGe(A.AttrVar, Z.MkInt(0)));
var b_rule2 = A.MkAcceptorRule(0, "two", Z.MkLe(A.AttrVar, Z.MkInt(2)), 0, 0);
var b_rule1 = A.MkAcceptorRule(0, "one", Z.MkLt(A.AttrVar, Z.MkInt(1)), 0);
var b_rule0 = A.MkAcceptorRule(0, "zero", Z.MkLe(A.AttrVar, Z.MkInt(0)));
var a = A.MkTreeAcceptor(a_rule2, a_rule1, a_rule0);
var b = A.MkTreeAcceptor(b_rule2, b_rule1, b_rule0);
//all two-nodes have attribute 2, all zero-nodes have attribute 0 and no one-node is possible because the guards conflict
var ab = a.Intersect(b);
var t = A.MkTree("two", Z.MkInt(2), A.MkTree("two", Z.MkInt(2), A.MkTree("zero", Z.MkInt(0)), A.MkTree("zero", Z.MkInt(0))), A.MkTree("zero", Z.MkInt(0)));
var t_out = ab[t];
Assert.AreEqual<int>(1, t_out.Length);
Assert.AreEqual<Expr>(null, t_out[0]);
var t2 = A.MkTree("two", Z.MkInt(2), A.MkTree("two", Z.MkInt(3), A.MkTree("zero", Z.MkInt(0)), A.MkTree("zero", Z.MkInt(0))), A.MkTree("zero", Z.MkInt(0)));
var t_out2 = ab[t2];
Assert.AreEqual<int>(0, t_out2.Length);
var t_a = a[t2];
Assert.AreEqual<int>(1, t_a.Length);
Assert.AreEqual<Expr>(null, t_a[0]);
}
示例8: TestInvalidAcceptorStateInStart
public void TestInvalidAcceptorStateInStart()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
Func<int, int, Expr> q = (state, var) => { return A.MkTrans(A, state, var); };
//two(1+x0,one(x1),one(x2))
var b = A.MkTree("two",
Z.MkAdd(Z.MkInt(1), A.AttrVar),
A.MkTree("one", Z.MkAdd(Z.MkInt(1), A.AttrVar), q(0, 1)),
A.MkTree("one", Z.MkAdd(Z.MkInt(2), A.AttrVar), q(0, 2)));
var rule0 = Z.TT.MkTreeRule(A, A, 0, "zero", Z.True, A.MkTree("zero", A.AttrVar));
var rule1 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("one", A.AttrVar, q(0, 1)));
var rule2 = Z.TT.MkTreeRule(A, A, 0, "two", Z.True, A.MkTree("two", A.AttrVar, q(0, 2), q(0, 1)));
var rule3 = Z.TT.MkTreeRule(A, A, 1, "two", Z.True, null, new int[] { 1 }, new int[] { 1 });
var rule4 = Z.TT.MkTreeRule(A, A, 1, "zero", Z.True, A.MkTree("zero", A.AttrVar));
try
{
var F = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { rule0, rule1, rule2, rule3, rule4 });
}
catch (AutomataException e)
{
Assert.AreEqual(AutomataExceptionKind.TreeTransducer_InvalidUseOfAcceptorState, e.kind);
}
}
示例9: TestErrorCases
public void TestErrorCases()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
//two(1+x0,one(x1),one(x2))
var b = A.MkTree("two",
Z.MkAdd(Z.MkInt(1), A.AttrVar),
A.MkTree("one", Z.MkAdd(Z.MkInt(1), A.AttrVar), A.ChildVar(1)),
A.MkTree("one", Z.MkAdd(Z.MkInt(2), A.AttrVar), A.ChildVar(2)));
//add 100 to the attribute of a zero-node
var rule0 = Z.TT.MkTreeRule(A, A, 0, "zero", Z.True, A.MkTree("zero", Z.MkAdd(Z.MkInt(100), A.AttrVar)));
//keep one-nodes unchanged
var rule1 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("one", A.AttrVar, A.ChildVar(1)));
//apply transformation to the second child and swap it with the first child
var rule2 = Z.TT.MkTreeRule(A, A, 0, "two", Z.True, A.MkTree("two", A.AttrVar, A.MkTrans(A, 1, 2), A.ChildVar(1)));
try
{
var F = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { rule0, rule1, rule2 });
Assert.IsTrue(false, "must not reach this line");
}
catch (AutomataException e)
{
Assert.AreEqual(AutomataExceptionKind.TreeTransducer_InvalidStateId, e.kind);
}
try
{
var rule2b = Z.TT.MkTreeRule(A, A, 0, "two", Z.True, A.MkTree("two", A.AttrVar, A.MkTrans(A, 0, 3), A.ChildVar(1)));
var F = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { rule0, rule1, rule2b });
Assert.IsTrue(false, "must not reach this line");
}
catch (AutomataException e)
{
Assert.AreEqual(AutomataExceptionKind.RankedAlphabet_ChildAccessorIsOutOufBounds, e.kind);
}
}
示例10: TestDomainAutomatonCreation
public void TestDomainAutomatonCreation()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
var r1 = Z.TT.MkTreeRule(A, A, 0, "two", Z.MkGe(A.AttrVar, Z.MkInt(2)),
A.MkTree("two", A.AttrVar, A.MkTree("one", A.AttrVar, A.MkTrans(A, 0, 1)),
A.MkTree("two", A.AttrVar, A.MkTrans(A, 0, 2), A.MkTrans(A, 1, 2))));
var r2 = Z.TT.MkTreeRule(A, A, 1, "two", Z.MkLe(A.AttrVar, Z.MkInt(5)),
A.MkTree("two", A.AttrVar, A.MkTree("one", A.AttrVar, A.MkTrans(A, 0, 1)),
A.MkTree("two", A.AttrVar, A.MkTrans(A, 0, 1), A.MkTrans(A, 1, 2))));
var r3 = Z.TT.MkTreeRule(A, A, 1, "one", Z.True, A.MkTree("zero", A.AttrVar));
var r4 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("zero", A.AttrVar));
var r5 = Z.TT.MkTreeRule(A, A, 0, "zero", Z.True, A.MkTree("zero", A.AttrVar));
var T = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { r1, r2, r3, r4, r5 });
var D = T.ComputeDomainAcceptor();
Assert.AreEqual<int>(2, T.StateCount);
Assert.AreEqual<int>(2, D.StateCount);
Assert.AreEqual<int>(5, D.RuleCount);
}
示例11: TestCompositionCornerCase2
public void TestCompositionCornerCase2()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
var q0 = Z.MkInt(0);
Func<int, int, Expr> q = (state, var) =>
{
return A.MkTrans(A, state, var);
};
//two(1+x0,one(x1),one(x2))
var b = A.MkTree("two",
Z.MkAdd(Z.MkInt(1), A.AttrVar),
A.MkTree("one", Z.MkAdd(Z.MkInt(1), A.AttrVar), q(0,1)),
A.MkTree("one", Z.MkAdd(Z.MkInt(2), A.AttrVar), q(0,1)));
//add 100 to the attribute of a zero-node
var rule00 = Z.TT.MkTreeRule(A, A, 0, "zero", Z.True, A.MkTree("zero", Z.MkAdd(Z.MkInt(100),A.AttrVar)));
//keep one-nodes unchanged
var rule01 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("one", A.AttrVar, q(1,1)));
//apply transformation to the second child and swap it with the first child
var rule02 = Z.TT.MkTreeRule(A, A, 0, "two", Z.True, A.MkTree("two", A.AttrVar, A.MkTrans(A, 0, 2), q(1,1)));
//identity mapping
var rule10 = Z.TT.MkTreeRule(A, A, 1, "zero", Z.True, A.MkTree("zero", A.AttrVar));
var rule11 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("one", A.AttrVar, q(1, 1)));
var rule12 = Z.TT.MkTreeRule(A, A, 0, "two", Z.True, A.MkTree("two", A.AttrVar, q(1, 1), q(1, 2)));
var F = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { rule00, rule01, rule02, rule10, rule11, rule12 });
var FF = F.Compose(F);
var t1 = A.MkTree("two", Z.MkInt(22), A.MkTree("zero", Z.MkInt(5)), A.MkTree("zero", Z.MkInt(6)));
var t2 = A.MkTree("two", Z.MkInt(22), A.MkTree("zero", Z.MkInt(106)), A.MkTree("zero", Z.MkInt(5)));
var t3 = A.MkTree("two", Z.MkInt(22), A.MkTree("zero", Z.MkInt(105)), A.MkTree("zero", Z.MkInt(106)));
var t4 = A.MkTree("two", Z.MkInt(22), A.MkTree("zero", Z.MkInt(206)), A.MkTree("zero", Z.MkInt(105)));
var FFF = FF.Compose(F);
//Assert.AreEqual(3, FFF.Rules.Count);
var s2 = F[t1][0];
var s3 = FF[t1][0];
var s4 = FFF[t1][0];
Assert.AreEqual<Expr>(t2, s2);
Assert.AreEqual<Expr>(t3, s3);
Assert.AreEqual<Expr>(t4, s4);
}
示例12: TestCompositionCornerCase1
public void TestCompositionCornerCase1()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
var q0 = Z.MkInt(0);
Func<int, int, Expr> q = (state,var) =>
{
return A.MkTrans(A, state, var);
};
//two(1+x0,one(x1),one(x2))
var b = A.MkTree("two",
Z.MkAdd(Z.MkInt(1), A.AttrVar),
A.MkTree("one", Z.MkAdd(Z.MkInt(1), A.AttrVar), q(0,1)),
A.MkTree("one", Z.MkAdd(Z.MkInt(2), A.AttrVar), q(0,2)));
var rule0 = Z.TT.MkTreeRule(A, A, 0, "zero", Z.True, A.MkTree("zero", A.AttrVar));
var rule1 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("one", A.AttrVar, q(0,1)));
var rule2 = Z.TT.MkTreeRule(A, A, 0, "two", Z.True, A.MkTree("two", A.AttrVar, q(0,2), q(0,1)));
var F = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { rule0, rule1, rule2 });
var FF = F.Compose(F);
var t1 = A.MkTree("two", Z.MkInt(22), A.MkTree("zero", Z.MkInt(5)), A.MkTree("zero", Z.MkInt(6)));
var t2 = A.MkTree("two", Z.MkInt(22), A.MkTree("zero", Z.MkInt(6)), A.MkTree("zero", Z.MkInt(5)));
var FFF = FF.Compose(F);
Assert.AreEqual(3, FFF.RuleCount);
var s1 = F[t1][0];
var s2 = FF[t1][0];
var s3 = FFF[t1][0];
Assert.AreEqual<Expr>(t2, s1);
Assert.AreEqual<Expr>(t1, s2);
Assert.AreEqual<Expr>(t2, s3);
}
示例13: TestFastGeneration
public void TestFastGeneration()
{
Z3Provider Z = new Z3Provider();
Sort color = Z.MkEnumSort("Color", "blue", "green", "red");
string enum_sort_name = color.Name.ToString();
Assert.AreEqual<string>("Color", enum_sort_name);
Assert.AreEqual<string>("green", Z.GetEnumElement("Color", "green").FuncDecl.Name.ToString());
FuncDecl[] fields = new FuncDecl[5];
FuncDecl mkTuple;
Sort attrSort = Z.MkTupleSort("$", new string[] { "i", "b", "e", "s", "r" }, new Sort[] { Z.IntSort, Z.BoolSort, color, Z.StringSort, Z.RealSort }, out mkTuple, out fields);
string tuple_sort_name = attrSort.Name.ToString();
string tuple_contructor_name = mkTuple.Name.ToString();
Assert.AreEqual<string>("$", tuple_sort_name);
Assert.AreEqual<string>("$", tuple_contructor_name);
Assert.AreEqual<string>("i", fields[0].Name.ToString());
Assert.AreEqual<string>("b", fields[1].Name.ToString());
Assert.AreEqual<string>("e", fields[2].Name.ToString());
Assert.AreEqual<string>("Int", Z.GetRange(fields[0]).Name.ToString());
Assert.AreEqual<string>("Bool", Z.GetRange(fields[1]).Name.ToString());
Assert.AreEqual<string>("Color", Z.GetRange(fields[2]).Name.ToString());
var A = (Z.TT.MkRankedAlphabet("A", attrSort, new string[] { "zero", "one", "two" }, new int[] { 0, 1, 2 }));
Expr _i_plus_1 = Z.MkApp(mkTuple, Z.MkAdd(Z.MkProj(0, A.AttrVar), Z.MkInt(1)), Z.True,
Z.MkIte(Z.MkGe(Z.MkProj(0, A.AttrVar), Z.MkInt(4)), Z.GetEnumElement("Color", "green"), Z.GetEnumElement("Color", "blue")), Z.MkProj(3, A.AttrVar), Z.MkAdd(Z.MkProj(4, A.AttrVar), Z.MkNumeral("9/3", Z.RealSort)));
Expr _i_plus_1_foo = Z.MkApp(mkTuple, Z.MkAdd(Z.MkProj(0, A.AttrVar), Z.MkInt(1)), Z.True,
Z.MkIte(Z.MkGe(Z.MkProj(0, A.AttrVar), Z.MkInt(4)), Z.GetEnumElement("Color", "green"), Z.GetEnumElement("Color", "blue")), Z.MkListFromString("foo", Z.CharacterSort), Z.MkNumeral("5.06", Z.RealSort));
var proj = Z.GetTupleField(attrSort, 0);
var proj_term = Z.MkApp(proj, _i_plus_1);
var proj_term2 = Z.MkProj(0, _i_plus_1);
var r1 = Z.TT.MkTreeRule(A, A, 0, "two", Z.MkGe(Z.MkProj(0, A.AttrVar), Z.MkInt(2)),
A.MkTree("two", _i_plus_1, A.MkTree("one", _i_plus_1, A.MkTrans(A, 0, 1)),
A.MkTree("two", _i_plus_1, A.MkTrans(A, 0, 2), A.MkTrans(A, 1, 2))));
var r2 = Z.TT.MkTreeRule(A, A, 1, "two", Z.MkLe(Z.MkProj(0, A.AttrVar), Z.MkInt(5)),
A.MkTree("two", _i_plus_1, A.MkTree("one", _i_plus_1, A.MkTrans(A, 0, 1)),
A.MkTree("two", _i_plus_1, A.MkTrans(A, 0, 1), A.MkTrans(A, 1, 2))));
var r3 = Z.TT.MkTreeRule(A, A, 1, "one", Z.True, A.MkTree("zero", _i_plus_1));
var r4 = Z.TT.MkTreeRule(A, A, 0, "one", Z.True, A.MkTree("zero", _i_plus_1_foo));
var r5 = Z.TT.MkTreeRule(A, A, 0, "zero", Z.True, A.MkTree("zero", _i_plus_1_foo));
var T = Z.TT.MkTreeAutomaton(0, A, A, new TreeRule[] { r1, r2, r3, r4, r5 });
var D = T.ComputeDomainAcceptor();
var sb = new StringBuilder();
var fastgen = new FastGen(Z);
fastgen.ToFast(enum_sort_name, sb);
fastgen.ToFast(A, sb);
fastgen.ToFast("A", T, sb, false);
fastgen.GetStateName = (x => "p_" + x);
fastgen.ToFast("A", D, sb, true);
Console.WriteLine(sb.ToString());
}
示例14: TestRegularLookaheadComposition2
public void TestRegularLookaheadComposition2()
{
Z3Provider Z = new Z3Provider();
var A = (Z.TT.MkRankedAlphabet("A", Z.IntSort, new string[] { "zeroA", "oneA", "twoA" }, new int[] { 0, 1, 2 }));
var B = (Z.TT.MkRankedAlphabet("B", Z.IntSort, new string[] { "zeroB", "oneB", "twoB" }, new int[] { 0, 1, 2 }));
var C = (Z.TT.MkRankedAlphabet("C", Z.IntSort, new string[] { "zeroC", "oneC", "twoC" }, new int[] { 0, 1, 2 }));
var _0 = Z.MkInt(0);
var _1 = Z.MkInt(1);
var _2 = Z.MkInt(2);
var AB_r0 = Z.TT.MkTreeRule(A, B, 0, "oneA", Z.MkEq(_0, A.AttrVar), B.MkTree("oneB", Z.MkAdd(_1, A.AttrVar), A.MkTrans(B, 1, 1)), new int[][] { new int[] { 1 } });
var AB_r1 = Z.TT.MkTreeRule(A, B, 1, "oneA", Z.MkEq(_1, A.AttrVar), B.MkTree("oneB", Z.MkAdd(_1, A.AttrVar), A.MkTrans(B, 0, 1)), new int[][] { new int[] { 0 } });
var AB_r2 = Z.TT.MkTreeRule(A, B, 1, "oneA", Z.MkEq(_2, A.AttrVar), B.MkTree("zeroB", Z.MkAdd(_1, A.AttrVar)));
//just accept the input if the attribute is 1 and delete the child subtree
var BC_r0 = Z.TT.MkTreeRule(B, C, 0, "oneB", Z.MkEq(_1, B.AttrVar), C.MkTree("zeroC", B.AttrVar));
var AB = Z.TT.MkTreeAutomaton(0, A, B, new TreeRule[] { AB_r0, AB_r1, AB_r2});
var BC = Z.TT.MkTreeAutomaton(0, B, C, new TreeRule[] { BC_r0 });
var AC = TreeTransducer.ComposeR(AB, BC);
Assert.AreEqual<int>(4, AC.RuleCount);
}
示例15: TupleTest
public void TupleTest()
{
Z3Provider z3p = new Z3Provider();
//create the tuple sort for mouth
FuncDecl mouth;
FuncDecl[] mouth_accessors;
var MOUTH = z3p.MkTupleSort("MOUTH", new string[] { "open", "teeth" }, new Sort[] { z3p.BoolSort, z3p.IntSort }, out mouth, out mouth_accessors);
Func<Expr,Expr,Expr> mk_mouth = ((o,t) => z3p.MkApp(mouth, o, t));
Func<Expr,Expr> get_open = (m => z3p.MkApp(mouth_accessors[0], m));
Func<Expr,Expr> get_teeth = (m => z3p.MkApp(mouth_accessors[1], m));
//create the tuple sort for nose
FuncDecl nose;
FuncDecl[] nose_accessors;
var NOSE = z3p.MkTupleSort("NOSE", new string[] { "size" }, new Sort[] { z3p.IntSort }, out nose, out nose_accessors);
Func<Expr,Expr> mk_nose = (s => z3p.MkApp(nose, s));
Func<Expr,Expr> get_size = (n => z3p.MkApp(nose_accessors[0], n));
//create the tuple sort for head
FuncDecl head;
FuncDecl[] head_accessors;
var HEAD = z3p.MkTupleSort("HEAD", new string[] { "bald", "nose", "mouth" }, new Sort[] { z3p.BoolSort, NOSE, MOUTH }, out head, out head_accessors);
Func<Expr,Expr,Expr,Expr> mk_head = ((b,n,m) => z3p.MkApp(head, b,n,m));
Func<Expr,Expr> get_bald = (h => z3p.MkApp(head_accessors[0], h));
Func<Expr,Expr> get_nose = (h => z3p.MkApp(head_accessors[1], h));
Func<Expr,Expr> get_mouth = (h => z3p.MkApp(head_accessors[2], h));
//------------------------
// create a transformation "punch" from HEAD tp HEAD that removes k teeth, k is the second parameter of the transformation
var punch = z3p.MkFuncDecl("punch", new Sort[]{HEAD, z3p.IntSort}, HEAD);
var x = z3p.MkVar(0, HEAD); // <-- this is the input HEAD
var y = z3p.MkVar(1, z3p.IntSort); // <-- this is the n parameter
//this is the actual transformation of x that removes one tooth
var new_mouth = mk_mouth(get_open(get_mouth(x)), z3p.MkSub(get_teeth(get_mouth(x)), y));
var old_nose = get_nose(x);
var old_bald = get_bald(x);
var punch_def = mk_head(old_bald, old_nose,new_mouth);
var punch_axiom = z3p.MkEqForall(z3p.MkApp(punch, x , y), punch_def, x, y);
Func<Expr,Expr,Expr> punch_app = ((h,k) => z3p.MkApp(punch, h,k));
z3p.MainSolver.Assert(punch_axiom);
//------------------------
// create a transformation "hit" from HEAD tp HEAD that doubles the size of the nose
var hit = z3p.MkFuncDecl("hit", HEAD, HEAD);
var hit_def = mk_head(get_bald(x), mk_nose(z3p.MkMul(z3p.MkInt(2),get_size(get_nose(x)))), get_mouth(x));
var hit_axiom = z3p.MkEqForall(z3p.MkApp(hit, x), hit_def, x);
Func<Expr,Expr> hit_app = (h => z3p.MkApp(hit, h));
z3p.MainSolver.Assert(hit_axiom);
//-------------------------------
// Analysis
var H = z3p.MkConst("H", HEAD);
var N = z3p.MkConst("N", z3p.IntSort);
// check that hit and punch commute
z3p.MainSolver.Push();
z3p.MainSolver.Assert(z3p.MkNeq(punch_app(hit_app(H), N), hit_app(punch_app(H, N))));
Status status = z3p.Check(); //here status must be UNSATISFIABLE
z3p.MainSolver.Pop(); //remove the temporary context
//check that hit is not idempotent
z3p.MainSolver.Push();
z3p.MainSolver.Assert(z3p.MkNeq(hit_app(hit_app(H)), hit_app(H)));
status = z3p.Check(); //here status must not be UNSATISFIABLE (it is UNKNOWN due to use of axioms)
var model1 = z3p.Z3S.Model;
var witness1 = model1.Evaluate(H, true); //a concrete instance of HEAD that shows when hitting twice is not the same as hitting once
z3p.MainSolver.Pop();
//but it is possible that hitting twice does no harm (when nose has size 0)
z3p.MainSolver.Push();
z3p.MainSolver.Assert(z3p.MkEq(hit_app(hit_app(H)), hit_app(H)));
status = z3p.Check();
var model2 = z3p.Z3S.Model;
var witness2 = model2.Evaluate(H, true);
z3p.MainSolver.Pop();
}