本文整理汇总了C#中VectorGaussian.SetToProduct方法的典型用法代码示例。如果您正苦于以下问题:C# VectorGaussian.SetToProduct方法的具体用法?C# VectorGaussian.SetToProduct怎么用?C# VectorGaussian.SetToProduct使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类VectorGaussian
的用法示例。
在下文中一共展示了VectorGaussian.SetToProduct方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: FirstAverageConditional
/// <summary>
/// EP message to 'first'
/// </summary>
/// <param name="concat">Incoming message from 'concat'. Must be a proper distribution. If any element is uniform, the result will be uniform.</param>
/// <param name="second">Incoming message from 'second'.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'first' as the random arguments are varied.
/// The formula is <c>proj[p(first) sum_(concat,second) p(concat,second) factor(concat,first,second)]/p(first)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="concat"/> is not a proper distribution</exception>
public static VectorGaussian FirstAverageConditional([SkipIfUniform] VectorGaussian concat, VectorGaussian second, VectorGaussian result)
{
if (second.IsPointMass) return FirstAverageConditional(concat, second.Point, result);
int dim1 = result.Dimension;
VectorGaussian concatTimesSecond = new VectorGaussian(concat.Dimension);
concatTimesSecond.MeanTimesPrecision.SetSubvector(dim1, second.MeanTimesPrecision);
concatTimesSecond.Precision.SetSubmatrix(dim1, dim1, second.Precision);
concatTimesSecond.SetToProduct(concatTimesSecond, concat);
concatTimesSecond.GetMarginal(0, result);
return result;
}
示例2: SecondAverageConditional
/// <summary>
/// EP message to 'second'
/// </summary>
/// <param name="concat">Incoming message from 'concat'. Must be a proper distribution. If any element is uniform, the result will be uniform.</param>
/// <param name="first">Incoming message from 'first'.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'second' as the random arguments are varied.
/// The formula is <c>proj[p(second) sum_(concat,first) p(concat,first) factor(concat,first,second)]/p(second)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="concat"/> is not a proper distribution</exception>
public static VectorGaussian SecondAverageConditional([SkipIfUniform] VectorGaussian concat, VectorGaussian first, VectorGaussian result)
{
if (first.IsPointMass) return SecondAverageConditional(concat, first.Point, result);
int dim1 = first.Dimension;
VectorGaussian concatTimesFirst = new VectorGaussian(concat.Dimension);
concatTimesFirst.MeanTimesPrecision.SetSubvector(0, first.MeanTimesPrecision);
concatTimesFirst.Precision.SetSubmatrix(0, 0, first.Precision);
concatTimesFirst.SetToProduct(concatTimesFirst, concat);
concatTimesFirst.GetMarginal(dim1, result);
return result;
}
示例3: ShapeLocationTimesFactor
private static VectorGaussian ShapeLocationTimesFactor(
Vector point, Gaussian shapeX, Gaussian shapeY, PositiveDefiniteMatrix shapeOrientation)
{
VectorGaussian shapeLocationDistr = VectorGaussian.FromMeanAndVariance(
Vector.FromArray(shapeX.GetMean(), shapeY.GetMean()),
new PositiveDefiniteMatrix(new double[,] { { shapeX.GetVariance(), 0.0 }, { 0.0, shapeY.GetVariance() } }));
VectorGaussian factorDistribution = VectorGaussian.FromMeanAndPrecision(point, shapeOrientation);
VectorGaussian result = new VectorGaussian(2);
result.SetToProduct(shapeLocationDistr, factorDistribution);
return result;
}