当前位置: 首页>>代码示例>>C#>>正文


C# VectorF类代码示例

本文整理汇总了C#中VectorF的典型用法代码示例。如果您正苦于以下问题:C# VectorF类的具体用法?C# VectorF怎么用?C# VectorF使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


VectorF类属于命名空间,在下文中一共展示了VectorF类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Add

 public void Add()
 {
     VectorF v1 = new VectorF(new float[] { 1, 2, 3, 4, 5 });
       VectorF v2 = new VectorF(new float[] { 6, 7, 8, 9, 10 });
       VectorF v3 = VectorF.Add(v1, v2);
       Assert.AreEqual(new VectorF(new float[] { 7, 9, 11, 13, 15 }), v3);
 }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:7,代码来源:VectorFTest.cs

示例2: PrincipalComponentAnalysisF

        //--------------------------------------------------------------
        /// <summary>
        /// Creates the principal component analysis for the given list of points.
        /// </summary>
        /// <param name="points">
        /// The list of data points. All points must have the same 
        /// <see cref="VectorF.NumberOfElements"/>.
        /// </param>
        /// <exception cref="ArgumentNullException">
        /// <paramref name="points"/> is <see langword="null"/>.
        /// </exception>
        /// <exception cref="ArgumentException">
        /// <paramref name="points"/> is empty.
        /// </exception>
        public PrincipalComponentAnalysisF(IList<VectorF> points)
        {
            if (points == null)
            throw new ArgumentNullException("points");
              if (points.Count == 0)
            throw new ArgumentException("The list of points is empty.");

              // Compute covariance matrix.
              MatrixF covarianceMatrix = StatisticsHelper.ComputeCovarianceMatrix(points);

              // Perform Eigenvalue decomposition.
              EigenvalueDecompositionF evd = new EigenvalueDecompositionF(covarianceMatrix);

              int numberOfElements = evd.RealEigenvalues.NumberOfElements;
              Variances = new VectorF(numberOfElements);
              V = new MatrixF(numberOfElements, numberOfElements);

              // Sort eigenvalues by decreasing value.
              // Since covarianceMatrix is symmetric, we have no imaginary eigenvalues.
              for (int i = 0; i < Variances.NumberOfElements; i++)
              {
            int index = evd.RealEigenvalues.IndexOfLargestElement;

            Variances[i] = evd.RealEigenvalues[index];
            V.SetColumn(i, evd.V.GetColumn(index));

            evd.RealEigenvalues[index] = float.NegativeInfinity;
              }
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:43,代码来源:PrincipalComponentAnalysisF.cs

示例3: NodeDestDistInt

 /// <summary>Creates a new instance of NodeDestDistInt.</summary>
 /// <param name="node">The source Node.</param>
 /// <param name="dest">The destination of the new node.</param>
 /// <param name="dist">The distance from the source node to the nearest intersection.</param>
 /// <param name="intersections">The number of intersections.</param>
 public NodeDestDistInt(Node node, VectorF dest, FInt dist, int intersections)
 {
     this.Node = node;
     this.Dest = dest;
     this.Dist = dist;
     this.Intersections = intersections;
 }
开发者ID:wwarnick,项目名称:Sever,代码行数:12,代码来源:NodeDestDistInt.cs

示例4: Integrate

 /// <summary>
 /// Computes the new state x1 at time t1.
 /// </summary>
 /// <param name="x0">The state x0 at time t0.</param>
 /// <param name="t0">The time t0.</param>
 /// <param name="t1">The target time t1 for which the new state x1 is computed.</param>
 /// <returns>The new state x1 at time t1.</returns>
 public override VectorF Integrate(VectorF x0, float t0, float t1)
 {
     float dt = (t1 - t0);
       VectorF d = FirstOrderDerivative(x0, t0);
       VectorF result = x0 + dt * d;
       return result;
 }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:14,代码来源:ExplicitEulerIntegratorF.cs

示例5: Test1

        public void Test1()
        {
            VectorF state = new VectorF(new float[]{ 0, 1 });
              VectorF result = new RungeKutta4IntegratorF(GetFirstOrderDerivatives).Integrate(state, 2, 2.5f);

              Assert.AreEqual(0f, result[0]);
              Assert.AreEqual(3.061035156f, result[1]);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:8,代码来源:RungeKutta4IntegratorFTest.cs

示例6: GetFirstOrderDerivatives

 public VectorF GetFirstOrderDerivatives(VectorF x, float t)
 {
     // A dummy function: f(x[index], t) = index * t;
       VectorF result = new VectorF(x.NumberOfElements);
       for (int i = 0; i < result.NumberOfElements; i++)
     result[i] = i*t;
       return result;
 }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:8,代码来源:ExplicitEulerIntegratorFTest.cs

示例7: EigenvalueDecompositionF

        //--------------------------------------------------------------
        /// <summary>
        /// Creates the eigenvalue decomposition of the given matrix.
        /// </summary>
        /// <param name="matrixA">The square matrix A.</param>
        /// <exception cref="ArgumentNullException">
        /// <paramref name="matrixA"/> is <see langword="null"/>.
        /// </exception>
        /// <exception cref="ArgumentException">
        /// <paramref name="matrixA"/> is non-square (rectangular).
        /// </exception>
        public EigenvalueDecompositionF(MatrixF matrixA)
        {
            if (matrixA == null)
            throw new ArgumentNullException("matrixA");
              if (matrixA.IsSquare == false)
            throw new ArgumentException("The matrix A must be square.", "matrixA");

              _n = matrixA.NumberOfColumns;
              _d = new VectorF(_n);
              _e = new VectorF(_n);

              _isSymmetric = matrixA.IsSymmetric;

              if (_isSymmetric)
              {
            _v = matrixA.Clone();

            // Tridiagonalize.
            ReduceToTridiagonal();

            // Diagonalize.
            TridiagonalToQL();
              }
              else
              {
            _v = new MatrixF(_n, _n);

            // Abort if A contains NaN values.
            // If we continue with NaN values, we run into an infinite loop.
            for (int i = 0; i < _n; i++)
            {
              for (int j = 0; j < _n; j++)
              {
            if (Numeric.IsNaN(matrixA[i, j]))
            {
              _e.Set(float.NaN);
              _v.Set(float.NaN);
              _d.Set(float.NaN);
              return;
            }
              }
            }

            // Storage of nonsymmetric Hessenberg form.
            MatrixF matrixH = matrixA.Clone();
            // Working storage for nonsymmetric algorithm.
            float[] ort = new float[_n];

            // Reduce to Hessenberg form.
            ReduceToHessenberg(matrixH, ort);

            // Reduce Hessenberg to real Schur form.
            HessenbergToRealSchur(matrixH);
              }
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:66,代码来源:EigenvalueDecompositionF.cs

示例8: SolveWithDefaultInitialGuess

        public void SolveWithDefaultInitialGuess()
        {
            MatrixF A = new MatrixF(new float[,] { { 4 } });
              VectorF b = new VectorF(new float[] { 20 });

              JacobiMethodF solver = new JacobiMethodF();
              VectorF x = solver.Solve(A, b);

              Assert.IsTrue(VectorF.AreNumericallyEqual(new VectorF(1, 5), x));
              Assert.AreEqual(2, solver.NumberOfIterations);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:11,代码来源:JacobiMethodFTest.cs

示例9: Test1

        public void Test1()
        {
            MatrixF A = new MatrixF(new float[,] { { 4 } });
              VectorF b = new VectorF(new float[] { 20 });

              SorMethodF solver = new SorMethodF();
              VectorF x = solver.Solve(A, null, b);

              Assert.IsTrue(VectorF.AreNumericallyEqual(new VectorF(1, 5), x));
              Assert.AreEqual(2, solver.NumberOfIterations);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:11,代码来源:SorMethodFTest.cs

示例10: Test1

        public void Test1()
        {
            VectorF state = new VectorF (new float[]{ 1, 2, 3, 4, 5, 6 });
              VectorF result = new ExplicitEulerIntegratorF(GetFirstOrderDerivatives).Integrate(state, 2, 2.5f);

              Assert.AreEqual(1f, result[0]);
              Assert.AreEqual(3f, result[1]);
              Assert.AreEqual(5f, result[2]);
              Assert.AreEqual(7f, result[3]);
              Assert.AreEqual(9f, result[4]);
              Assert.AreEqual(11f, result[5]);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:12,代码来源:ExplicitEulerIntegratorFTest.cs

示例11: Test4

        public void Test4()
        {
            MatrixF A = new MatrixF(new float[,] { { -12, 2 },
                                             { 2, 3 }});
              VectorF b = new VectorF(new float[] { 20, 28 });

              SorMethodF solver = new SorMethodF();
              VectorF x = solver.Solve(A, null, b);

              VectorF solution = MatrixF.SolveLinearEquations(A, b);
              Assert.IsTrue(VectorF.AreNumericallyEqual(solution, x));
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:12,代码来源:SorMethodFTest.cs

示例12: Test1

        public void Test1()
        {
            VectorF state = new VectorF (new float[] { 0, 1, 2, 3, 4, 5 });
              VectorF result = new MidpointIntegratorF(GetFirstOrderDerivatives).Integrate(state, 2, 2.5f);

              Assert.AreEqual(0f, result[0]);
              Assert.AreEqual(2.125f, result[1]);
              Assert.AreEqual(4.25f, result[2]);
              Assert.AreEqual(6.375f, result[3]);
              Assert.AreEqual(8.5f, result[4]);
              Assert.AreEqual(10.625f, result[5]);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:12,代码来源:MidpointIntegratorFTest.cs

示例13: Test2

        public void Test2()
        {
            MatrixF A = new MatrixF(new float[,] { { 1, 0 },
                                             { 0, 1 }});
              VectorF b = new VectorF(new float[] { 20, 28 });

              JacobiMethodF solver = new JacobiMethodF();
              VectorF x = solver.Solve(A, null, b);

              Assert.IsTrue(VectorF.AreNumericallyEqual(b, x));
              Assert.AreEqual(2, solver.NumberOfIterations);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:12,代码来源:JacobiMethodFTest.cs

示例14: Test3

        public void Test3()
        {
            MatrixF A = new MatrixF(new float[,] { { 2, 0 },
                                             { 0, 2 }});
              VectorF b = new VectorF(new float[] { 20, 28 });

              GaussSeidelMethodF solver = new GaussSeidelMethodF();
              VectorF x = solver.Solve(A, null, b);

              Assert.IsTrue(VectorF.AreNumericallyEqual(b / 2, x));
              Assert.AreEqual(2, solver.NumberOfIterations);
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:12,代码来源:GaussSeidelMethodFTest.cs

示例15: Test5

        public void Test5()
        {
            MatrixF A = new MatrixF(new float[,] { { -21, 2, -4, 0 },
                                             { 2, 3, 0.1f, -1 },
                                             { 2, 10, 111.1f, -11 },
                                             { 23, 112, 111.1f, -143 }});
              VectorF b = new VectorF(new float[] { 20, 28, -12, 0.1f });

              GaussSeidelMethodF solver = new GaussSeidelMethodF();
              VectorF x = solver.Solve(A, null, b);

              VectorF solution = MatrixF.SolveLinearEquations(A, b);
              Assert.IsTrue(VectorF.AreNumericallyEqual(solution, x));
        }
开发者ID:Zolniu,项目名称:DigitalRune,代码行数:14,代码来源:GaussSeidelMethodFTest.cs


注:本文中的VectorF类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。