本文整理汇总了C#中SparseVector.Length方法的典型用法代码示例。如果您正苦于以下问题:C# SparseVector.Length方法的具体用法?C# SparseVector.Length怎么用?C# SparseVector.Length使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SparseVector
的用法示例。
在下文中一共展示了SparseVector.Length方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: GetTfIdfVectorFourNewsItemsInDatabase
public void GetTfIdfVectorFourNewsItemsInDatabase()
{
// Add categories and news sources.
foreach (Category c in Categories)
{
c.Id = Archivist.AddCategory(c.Name);
}
Archivist.AddNewsSources(NewsSources);
Dictionary<string, List<int>> terms = new Dictionary<string, List<int>>();
// Add some news material.
for (int i = 0; i < NewsMaterial.Count; i++)
{
NewsMaterial n = NewsMaterial[i];
// Generate vector for index #1.
Dictionary<string, int> termsInText =
TermUtils.CalculateTermFrequency(n.Content);
// Find all unique terms in news, and increase counts.
foreach (KeyValuePair<string, int> term in termsInText)
{
if (!terms.ContainsKey(term.Key))
{
terms.Add(term.Key, new List<int>());
// Add for all news material items.
for (int j = 0; j < NewsMaterial.Count; j++)
{
terms[term.Key].Add(0);
}
}
terms[term.Key][i] += term.Value;
}
// Add to database.
Archivist.AddNews(n);
}
// Update idf values.
Archivist.UpdateIdfValues();
// Create expected vector.
SparseVector expectedVector = new SparseVector(terms.Count);
int index = 0;
foreach (KeyValuePair<string, List<int>> termCount in terms)
{
// Calculate idf.
int docCount = 0;
termCount.Value.ForEach((p) => docCount += p > 0 ? 1 : 0);
double idf = TermUtils.CalculateInverseDocumentFrequency(
NewsMaterial.Count,
docCount);
// Calculate tf.
int tf = termCount.Value[1];
// Set value in vector.
expectedVector[index] = (float)(tf * idf);
index++;
}
// Get vector.
List<NewsItem> news = Archivist.GetNews(new NewsQuery());
SparseVector vector = Archivist.GetTfIdfVector(
news.Find(n => n.Title.Equals(NewsMaterial[1].Title)));
Assert.AreEqual(expectedVector.Length(), vector.Length(), 0.001);
}
示例2: GetTfIdfVectorOneNewsItemInDatabase
public void GetTfIdfVectorOneNewsItemInDatabase()
{
// Add categories and news sources.
foreach (Category c in Categories)
{
c.Id = Archivist.AddCategory(c.Name);
}
Archivist.AddNewsSources(NewsSources);
Dictionary<string, int> terms = new Dictionary<string, int>();
// Add some news material.
NewsMaterial nItem = NewsMaterial[1];
// Generate vector.
Dictionary<string, int> termsInText =
TermUtils.CalculateTermFrequency(nItem.Content);
// Find all unique terms in news, and increase counts.
foreach (KeyValuePair<string, int> term in termsInText)
{
if (!terms.ContainsKey(term.Key))
{
terms.Add(term.Key, 0);
}
terms[term.Key] += term.Value;
}
// Add to database.
Archivist.AddNews(nItem);
// Update idf values.
Archivist.UpdateIdfValues();
// Create expected vector.
SparseVector expectedVector = new SparseVector(terms.Count);
int index = 0;
foreach (KeyValuePair<string, int> termCount in terms)
{
// Calculate idf.
double idf = TermUtils.CalculateInverseDocumentFrequency(
1,
1);
// Calculate tf.
int tf = termCount.Value;
// Set value in vector.
expectedVector[index] = (float)(tf * idf);
index++;
}
// Get vector.
List<NewsItem> news = Archivist.GetNews(new NewsQuery());
SparseVector vector = Archivist.GetTfIdfVector(
news.Find(n => n.Title.Equals(NewsMaterial[1].Title)));
Assert.AreEqual(expectedVector.Length(), vector.Length(), 0.001);
}
示例3: LengthTestWhenZero
public void LengthTestWhenZero()
{
SparseVector v = new SparseVector(5);
float expected = 0.0f;
double result = v.Length();
Assert.AreEqual(expected, result, EPSILON);
}