本文整理汇总了C#中Point2d.DistanceTo方法的典型用法代码示例。如果您正苦于以下问题:C# Point2d.DistanceTo方法的具体用法?C# Point2d.DistanceTo怎么用?C# Point2d.DistanceTo使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Point2d
的用法示例。
在下文中一共展示了Point2d.DistanceTo方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Leader
public static Result Leader(RhinoDoc doc)
{
var points = new Point3d[]
{
new Point3d(1, 1, 0),
new Point3d(5, 1, 0),
new Point3d(5, 5, 0),
new Point3d(9, 5, 0)
};
var xy_plane = Plane.WorldXY;
var points2d = new List<Point2d>();
foreach (var point3d in points)
{
double x, y;
if (xy_plane.ClosestParameter(point3d, out x, out y))
{
var point2d = new Point2d(x, y);
if (points2d.Count < 1 || point2d.DistanceTo(points2d.Last<Point2d>()) > RhinoMath.SqrtEpsilon)
points2d.Add(point2d);
}
}
doc.Objects.AddLeader(xy_plane, points2d);
doc.Views.Redraw();
return Result.Success;
}
示例2: convCurve
internal static IfcBoundedCurve convCurve(DatabaseIfc db, Curve crv, IfcCartesianPoint optStrt, bool twoD, out IfcCartesianPoint end)
{
double tol = db.Tolerance;
end = null;
Curve c = crv.DuplicateCurve();
if (c.IsLinear(tol))
{
if (twoD)
end = new IfcCartesianPoint(db, new Point2d(c.PointAtEnd.X, c.PointAtEnd.Y));
else
end = new IfcCartesianPoint(db, c.PointAtEnd);
if (optStrt == null)
{
if (twoD)
optStrt = new IfcCartesianPoint(db, new Point2d(c.PointAtStart.X, c.PointAtStart.Y));
else
optStrt = new IfcCartesianPoint(db, c.PointAtStart);
}
return new IfcPolyline(optStrt, end);
}
ArcCurve ac = c as ArcCurve;
if (ac != null)
return new IfcTrimmedCurve(db, ac.Arc, twoD, optStrt, out end);
Arc arc = Arc.Unset;
if (c.TryGetArc(out arc, tol))
return new IfcTrimmedCurve(db, arc, twoD, optStrt, out end);
Polyline pl = new Polyline();
if (c.TryGetPolyline(out pl))
{
if (db.mRelease != ReleaseVersion.IFC2x3 && db.mRelease != ReleaseVersion.IFC4)
{
if (twoD)
return new IfcIndexedPolyCurve(new IfcCartesianPointList2D(db, pl.ConvertAll(x => new Point2d(x.X, x.Y))));
else
return new IfcIndexedPolyCurve(new IfcCartesianPointList3D(db, pl));
}
List<IfcCartesianPoint> cps = new List<IfcCartesianPoint>();
if (twoD)
{
Point2d p = new Point2d(pl[0].X, pl[0].Y), n;
cps.Add(new IfcCartesianPoint(db, p));
for (int icounter = 1; icounter < pl.Count - 1; icounter++)
{
n = new Point2d(pl[icounter].X, pl[icounter].Y);
if (n.DistanceTo(p) > tol)
{
cps.Add(new IfcCartesianPoint(db, n));
p = n;
}
}
n = new Point2d(pl[pl.Count - 1].X, pl[pl.Count - 1].Y);
if (n.DistanceTo(p) > tol)
{
if (pl.IsClosed)
cps.Add(cps[0]);
else
cps.Add(new IfcCartesianPoint(db, n));
}
}
else
{
Point3d p = pl[0], n;
cps.Add(new IfcCartesianPoint(db, p));
for (int icounter = 1; icounter < pl.Count; icounter++)
{
n = pl[icounter];
if (n.DistanceTo(p) > tol)
{
cps.Add(new IfcCartesianPoint(db, n));
p = n;
}
}
}
return new IfcPolyline(cps);
}
PolyCurve plc = c as PolyCurve;
if (plc != null)
{
if (db.mRelease != ReleaseVersion.IFC2x3 && db.mRelease != ReleaseVersion.IFC4)
{
IfcIndexedPolyCurve ipc = IfcIndexedPolyCurve.Convert(db, plc, twoD);
if (ipc != null)
return ipc;
}
return new IfcCompositeCurve(db, plc, twoD);
}
if (db.mRelease != ReleaseVersion.IFC2x3)
{
NurbsCurve nc = c as NurbsCurve;
if (nc != null)
{
if (nc.IsRational)
return new IfcRationalBSplineCurveWithKnots(db, nc, twoD);
return new IfcBSplineCurveWithKnots(db, nc, twoD);
}
}
return null;
}