当前位置: 首页>>代码示例>>C#>>正文


C# MyMemoryBlock.SafeCopyToDevice方法代码示例

本文整理汇总了C#中MyMemoryBlock.SafeCopyToDevice方法的典型用法代码示例。如果您正苦于以下问题:C# MyMemoryBlock.SafeCopyToDevice方法的具体用法?C# MyMemoryBlock.SafeCopyToDevice怎么用?C# MyMemoryBlock.SafeCopyToDevice使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MyMemoryBlock的用法示例。


在下文中一共展示了MyMemoryBlock.SafeCopyToDevice方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Run

 public override void Run(MatOperation operation, MyMemoryBlock<float> A, MyMemoryBlock<float> B, MyMemoryBlock<float> Result)
 {
     Result.Fill(.0f);
     switch (operation)
     {
         case MatOperation.EuclidDist:
             if (B.Count == A.ColumnHint)
             {
                 A.SafeCopyToHost();
                 B.SafeCopyToHost();
                 for (int row = 0; row < A.Count / A.ColumnHint; row++)
                 {
                     Result.Host[row] = 0;
                     for (int Bindex = 0; Bindex < B.Count; Bindex++)
                     {
                         Result.Host[row] += (B.Host[Bindex] - A.Host[A.ColumnHint * row + Bindex]) * (B.Host[Bindex] - A.Host[A.ColumnHint * row + Bindex]);
                     }
                     Result.Host[row] = (float)Math.Sqrt( (double) Result.Host[row] );
                     //System.Console.Write(" " + Result.Host[row]);
                 }
                 Result.SafeCopyToDevice();
             }
             break;
         default:
             MyLog.Writer.WriteLine(MyLogLevel.ERROR, "Trying to run cpu mat ops. for undefined MatOperation");
             break;
     }
 }
开发者ID:Jlaird,项目名称:BrainSimulator,代码行数:28,代码来源:MyMatrixCPUOps.cs

示例2: Init

            // Sets up the genetic task
            public override void Init(int nGPU)
            {
                currentGen = 0;
                m_weights = 0;

                // Load the relevant kernels
                m_coeffGenKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "generateCoefficients");
                m_geneticKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "grow");
                m_extractKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "extractCoeffs");
                m_cosineGenKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "createCosineMatrix");
                m_implantKernel = MyKernelFactory.Instance.Kernel(nGPU, @"Genetic\CosyneGenetics", "implantCoeffs");

                // Init the random generator
                m_rand = new Random();

                // Set up coefficient Generation
                m_coeffGenKernel.SetupExecution(Owner.PopulationSize);
                // Set up genetic recombination
                m_geneticKernel.SetupExecution(Owner.PopulationSize);

                // This finds the first nn group in the network. Possibility of getting a list of networks and evolving them all seperately?
                List<MyNode> ch = Owner.Owner.Network.Children;
                foreach (MyNode n in ch)
                {
                    if (n is MyNeuralNetworkGroup)
                    {
                        nn = n as MyNeuralNetworkGroup;
                        MyLog.INFO.WriteLine("Evolving the layers of node: " + nn.Name);
                        break;
                    }
                }
                if (nn == null)
                {
                    throw new NullReferenceException("There is no top level NeuralNetworkGroup.");
                }

                // Construct the layerlist which is to be read from and written to
                constructLayerList(nn);

                // This is how big the weight matrix will be
                arr_size = (int)Math.Ceiling(Math.Sqrt(m_weights));

                // Get the relevant execution plan
                m_executionPlan = Owner.Owner.SimulationHandler.Simulation.ExecutionPlan[0];

                #region MemoryBlocks
                // Initialise the population
                population = new List<MyMemoryBlock<float>>();
                outputPop = new List<MyMemoryBlock<float>>();
                for (int i = 0; i < Owner.PopulationSize; i++)
                {
                    population.Add(new MyMemoryBlock<float>());
                    population[i].Owner = Owner;
                    population[i].Count = arr_size * arr_size;
                    population[i].AllocateMemory();

                    outputPop.Add(new MyMemoryBlock<float>());
                    outputPop[i].Owner = Owner;
                    outputPop[i].Count = arr_size * arr_size;
                    outputPop[i].AllocateMemory();
                }

                // Allocate space to manipulate weight matrices on the device
                cudaMatrices = new MyMemoryBlock<float>();
                cudaMatrices.Owner = Owner;
                cudaMatrices.Count = arr_size * arr_size * Owner.PopulationSize;
                cudaMatrices.AllocateDevice();

                // Allocate a memory block for the Cosine matrix
                multiplier = new MyMemoryBlock<float>();
                multiplier.Owner = Owner;
                multiplier.Count = arr_size * arr_size;
                multiplier.AllocateDevice();

                // Fill the cosine Matrices
                m_cosineGenKernel.SetupExecution(arr_size);
                m_cosineGenKernel.Run(multiplier, arr_size);

                // Allocate space needed for chromosomes
                chromosomePop = new MyMemoryBlock<float>();
                chromosomePop.Owner = Owner;
                if (DirectEvolution)
                    chromosomePop.Count = m_weights * Owner.PopulationSize;
                else
                    chromosomePop.Count = CoefficientsSaved * Owner.PopulationSize;
                chromosomePop.AllocateMemory();

                // Allocate some space for noise to seed the cuda_rand generator
                noise = new MyMemoryBlock<float>();
                noise.Owner = Owner;
                noise.Count = Owner.PopulationSize;
                noise.AllocateMemory();

                // Write some noise to the initial array
                for (int i = 0; i < Owner.PopulationSize; i++)
                {
                    noise.Host[i] = (float)m_rand.NextDouble() * 100000 + (float)m_rand.NextDouble() * 40;
                }
                noise.SafeCopyToDevice();
//.........这里部分代码省略.........
开发者ID:Soucha,项目名称:BrainSimulator,代码行数:101,代码来源:MyGeneticTrainingWorld.cs

示例3: OrthonormalizeVectors

        /// <summary>
        /// Transforms all the vectors stored in <paramref name="vectors"/> to be pair-wise orthonormal using a modified version of the Gram-Schmidt algorithm.
        /// </summary>
        /// <param name="vectors">The vectors to orthonormalize.</param>
        /// <param name="temp">A vector of temporal space.</param>
        /// <param name="xDim">The length of each vector.</param>
        /// <param name="yDim">The number of vectors.</param>
        /// <param name="dotKernel">The kernel to compute a dot product.</param>
        /// <param name="multKernel">The kernel to compute vector combinations.</param>
        public static void OrthonormalizeVectors(MyMemoryBlock<float> vectors, MyMemoryBlock<float> temp, int xDim, int yDim, MyProductKernel<float> dotKernel, MyCudaKernel multKernel, int GPU)
        {
            int count = xDim * yDim;

            Debug.Assert(vectors != null && temp != null, "Missing data!");
            Debug.Assert(dotKernel != null && multKernel != null, "Missing a kernel!");
            Debug.Assert(xDim > 0 && yDim > 0, "Negative matrix dimensions!");
            Debug.Assert(vectors.Count >= count, "Too little vectors to orthonormalize!");
            Debug.Assert(temp.Count >= xDim, "Too little temp space!");

            multKernel.SetupExecution(xDim);

            for (int i = 0; i < count; i += xDim)
            {
                var curr = vectors.GetDevicePtr(GPU, i);

                // Normalize the current vector
                {
                    //ZXC dotKernel.Run(temp, 0, curr, curr, xDim, /* distributed: */ 0);
                    dotKernel.Run(temp, curr, curr, xDim);
                    temp.SafeCopyToDevice(0, 1);

                    if (temp.Host[0] < 0.0000001f)
                        continue;

                    temp.Host[0] = (float)(1 / Math.Sqrt(temp.Host[0]));
                    temp.SafeCopyToDevice(0, 1);

                    multKernel.Run(curr, temp, curr, (int)MyJoin.MyJoinOperation.Multiplication, xDim, 1);
                }

                // Make all the remaining vectors orthogonal to the current one
                for (int j = i + xDim; j < count; j += xDim)
                {
                    var next = vectors.GetDevicePtr(GPU, j);

                    // Compute and subtract the projection onto the current vector
                    //ZXC dotKernel.Run(temp, xDim, curr, next, xDim, /* distributed: */ 0);
                    dotKernel.outOffset = xDim;
                    dotKernel.Run(temp, curr, next, xDim);

                    multKernel.Run(curr, temp, temp, (int)MyJoin.MyJoinOperation.Multiplication, xDim, 1);
                    multKernel.Run(next, temp, next, (int)MyJoin.MyJoinOperation.Subtraction, xDim, xDim);
                }
            }
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:55,代码来源:MyRandomPool.cs

示例4: NormalizeLeadingDim

        /// <summary>
        /// Normalizes vectors along the leading dimension.
        /// </summary>
        public static void NormalizeLeadingDim(
            MyMemoryBlock<float> vectors, MyMemoryBlock<float> temp,
            int leadingDim, int otherDim,
            MyProductKernel<float> dotKernel, MyCudaKernel multKernel, int GPU)
        {
            var count = leadingDim * otherDim;

            Debug.Assert(vectors != null && temp != null, "Missing data!");
            Debug.Assert(dotKernel != null && multKernel != null, "Missing kernels.");
            Debug.Assert(leadingDim > 0 && otherDim > 0, "Negative matrix dimensions!");
            Debug.Assert(vectors.Count >= count, "Too little vectors to orthonormalize!");
            Debug.Assert(temp.Count >= Math.Max(leadingDim, otherDim), "Too little temp space!");

            multKernel.SetupExecution(leadingDim);

            for (int i = 0; i < otherDim; i++)
            {
                var seg = vectors.GetDevicePtr(GPU, i * leadingDim);
                //dotKernel.Run(temp, i, seg, seg, leadingDim, /* distributed: */ 0);
                dotKernel.outOffset = i;
                dotKernel.Run(temp, seg, seg, leadingDim);
            }

            temp.SafeCopyToHost(0, otherDim);

            for (int i = 0; i < otherDim; i++)
            {
                if (temp.Host[i] < 0.0000001f)
                    temp.Host[i] = 0;
                else
                    temp.Host[i] = (float)(1 / Math.Sqrt(temp.Host[i]));
            }

            temp.SafeCopyToDevice(0, otherDim);

            for (int i = 0; i < otherDim; i++)
            {
                var seg = vectors.GetDevicePtr(GPU, i * leadingDim);
                var len = temp.GetDevicePtr(GPU, i);
                multKernel.Run(seg, len, seg, (int)MyJoin.MyJoinOperation.Multiplication, leadingDim, 1);
            }
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:45,代码来源:MyRandomPool.cs

示例5: GenerateTransformMatrix

        /// <summary>
        /// Generates a matrix with <paramref name="xDim"/> being the leading dimension in column-major storage.
        /// </summary>
        /// <param name="unmanagedVectors">A memory block to store the generated matrix.
        /// Must be as large as <paramref name="xDim"/> x <paramref name="yDim"/>.</param>
        /// <param name="unmanagedBaseVectors">A temporary block to store all the base vectors.
        /// Must be as large as Max(<paramref name="xDim"/>, <paramref name="yDim"/>)^2.
        /// Only neccessary when <paramref name="mode"/> is set to <see cref="VectorGenerationMode.AverageBaseVectors"/>.</param>
        /// <param name="temp">The temporary storage. It should be as long as the longer of the dimensions.</param>
        /// <param name="random">The random object for number generation.</param>
        /// <param name="xDim">The size of the other dimension.</param>
        /// <param name="yDim">The size of the leading dimension.</param>
        /// <param name="mode">If true, the vectors along the longer dimension will be orthonormalized.</param>
        /// <param name="axisToNormalize">The axis along which to normalize vectors after orthonormalization.</param>
        public static void GenerateTransformMatrix(
            MyMemoryBlock<float> unmanagedVectors, MyMemoryBlock<float> unmanagedBaseVectors, MyMemoryBlock<float> temp,
            Random random, int xDim, int yDim,
            MyProductKernel<float> dotKernel, MyCudaKernel multKernel, MyCudaKernel transposeKernel, int GPU,
            VectorGenerationMode mode = VectorGenerationMode.Normal, AxisToNormalizeEnum axisToNormalize = AxisToNormalizeEnum.yDim)
        {
            Debug.Assert(random != null, "Missing random object");
            Debug.Assert(unmanagedVectors != null && (mode != VectorGenerationMode.AverageBaseVectors || unmanagedBaseVectors != null) && temp != null, "Missing data!");
            Debug.Assert(dotKernel != null && multKernel != null && transposeKernel != null, "Missing a kernel!");

            // Mapping to rows --- Column-major storage --- rows will the leading dimension
            // The larger dimension vectors will be orthogonal; the cols dimension vectors will be normalized

            switch (mode)
            {
                case VectorGenerationMode.Normal:
                    if (axisToNormalize == AxisToNormalizeEnum.xDim)
                    {
                        // Generate normalized vectors with xDim as the leading dim
                        GenerateRandomNormalVectors(unmanagedVectors.Host, random, xDim, yDim);
                        unmanagedVectors.SafeCopyToDevice();

                        // Transpose to the correct position
                        transposeKernel.Run(unmanagedVectors, unmanagedVectors, xDim, yDim);
                    }
                    else
                    {
                        GenerateRandomNormalVectors(unmanagedVectors.Host, random, yDim, xDim);
                        unmanagedVectors.SafeCopyToDevice();
                    }
                    break;

                case VectorGenerationMode.Orthonormalize:
                    int largerDim = Math.Max(xDim, yDim);
                    int smallerDim = Math.Min(xDim, yDim);

                    // Generate vectors with larger leading dimension
                    GenerateRandomNormalVectors(unmanagedVectors.Host, random, largerDim, smallerDim, normalize: false);
                    unmanagedVectors.SafeCopyToDevice();

                    // Orthonormalize along the larger dimension
                    OrthonormalizeVectors(unmanagedVectors, temp, largerDim, smallerDim, dotKernel, multKernel, GPU);

                    if (xDim > yDim)
                    {
                        // xDim is leading and is normalized
                        // We need to transpose to get the correct dims
                        transposeKernel.Run(unmanagedVectors, unmanagedVectors, xDim, yDim);

                        if (axisToNormalize == AxisToNormalizeEnum.yDim)
                            NormalizeLeadingDim(unmanagedVectors, temp, yDim, xDim, dotKernel, multKernel, GPU);
                    }
                    else
                    {
                        // yDim is leading and is normalized
                        // The matrix is in correct position

                        if (axisToNormalize == AxisToNormalizeEnum.xDim)
                        {
                            // TODO: generate the matrix with transposed dims?
                            // TODO: SMELLY VERSION:
                            transposeKernel.Run(unmanagedVectors, unmanagedVectors, yDim, xDim);
                            NormalizeLeadingDim(unmanagedVectors, temp, xDim, yDim, dotKernel, multKernel, GPU);
                            transposeKernel.Run(unmanagedVectors, unmanagedVectors, xDim, yDim);
                        }
                    }
                    break;

                case VectorGenerationMode.AverageBaseVectors:
                    int longerDim = Math.Max(xDim, yDim);
                    int shorterDim = Math.Min(xDim, yDim);

                    GenerateTransformMatrix(
                        unmanagedBaseVectors, null, temp,
                        random, longerDim, longerDim,
                        dotKernel, multKernel, transposeKernel, GPU,
                        VectorGenerationMode.Orthonormalize);

                    if (shorterDim == longerDim)
                        break;

                    float it = 0f;
                    float step = longerDim / (float)shorterDim;
                    int beg, end = 0;

                    for (int i = 0; i < shorterDim; i++)
//.........这里部分代码省略.........
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:101,代码来源:MyRandomPool.cs

示例6: Run

        public void Run(VectorOperation operation,
            MyMemoryBlock<float> a,
            MyMemoryBlock<float> b,
            MyMemoryBlock<float> result)
        {
            if (!Validate(operation, a.Count, b.Count))
                return;

            switch (operation)
            {
                case VectorOperation.Rotate:
                {
                    b.SafeCopyToHost();
                    float rads = DegreeToRadian(b.Host[0]);
                    float[] transform = { (float)Math.Cos(rads), -(float)Math.Sin(rads), (float)Math.Sin(rads), (float)Math.Cos(rads) };
                    Array.Copy(transform, m_temp.Host, transform.Length);
                    m_temp.SafeCopyToDevice();
                    m_matOperation.Run(MatOperation.Multiplication, m_temp, a, result);
                }
                break;

                case VectorOperation.Angle:
                {
                    m_matOperation.Run(MatOperation.DotProd, a, b, result);
                    result.SafeCopyToHost();
                    float dotProd = result.Host[0];
                    float angle = RadianToDegree((float)Math.Acos(dotProd));
                    result.Fill(0);
                    result.Host[0] = angle;
                    result.SafeCopyToDevice();
                }
                break;

                case VectorOperation.DirectedAngle:
                {
                    result.Host[0] = -90;
                    result.SafeCopyToDevice();
                    Run(VectorOperation.Rotate, a, result, result);
                    result.CopyToMemoryBlock(m_temp, 0, 0, result.Count);

                    m_matOperation.Run(MatOperation.DotProd, a, b, result);
                    result.SafeCopyToHost();
                    float dotProd = result.Host[0];
                    float angle;
                    if (Math.Abs(Math.Abs(dotProd) - 1) < 1E-4)
                        angle = 0;
                    else
                        angle = RadianToDegree((float)Math.Acos(dotProd));

                    m_matOperation.Run(MatOperation.DotProd, m_temp, b, result);
                    result.SafeCopyToHost();
                    float perpDotProd = result.Host[0];

                    if (perpDotProd > 0)
                        angle *= -1;
                    result.Fill(0);
                    result.Host[0] = angle;
                    result.SafeCopyToDevice();
                }
                break;
            }
        }
开发者ID:sschocke,项目名称:BrainSimulator,代码行数:62,代码来源:VectorOps.cs


注:本文中的MyMemoryBlock.SafeCopyToDevice方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。