本文整理汇总了C#中MlkBiCgStab类的典型用法代码示例。如果您正苦于以下问题:C# MlkBiCgStab类的具体用法?C# MlkBiCgStab怎么用?C# MlkBiCgStab使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
MlkBiCgStab类属于命名空间,在下文中一共展示了MlkBiCgStab类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var monitor = new Iterator(new IIterationStopCriterium<Complex>[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium(1e-10),
});
var solver = new MlkBiCgStab(monitor);
var matrixX = solver.Solve(matrixA, matrixB);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA * matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreApproximatelyEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 1.0e-5);
Assert.AreApproximatelyEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 1.0e-5);
}
}
}
示例2: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
var matrixA = Matrix<double>.Build.Random(order, order, 1);
var matrixB = Matrix<double>.Build.Random(order, order, 1);
var monitor = new Iterator<double>(
new IterationCountStopCriterium<double>(1000),
new ResidualStopCriterium<double>(1e-10));
var solver = new MlkBiCgStab();
var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA*matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7);
}
}
}
示例3: SolveWideMatrixThrowsArgumentException
public void SolveWideMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(2, 3);
var input = new DenseVector(2);
var solver = new MlkBiCgStab();
Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
}
示例4: SolveLongMatrixThrowsArgumentException
public void SolveLongMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(3, 2);
var input = new DenseVector(3);
var solver = new MlkBiCgStab();
Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
}
示例5: SolveLongMatrixThrowsArgumentException
public void SolveLongMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(3, 2);
Vector input = new DenseVector(3);
var solver = new MlkBiCgStab();
Assert.Throws<ArgumentException>(() => solver.Solve(matrix, input));
}
示例6: UseSolver
/// <summary>
/// The main method that runs the MlkBiCgStab iterative solver.
/// </summary>
public void UseSolver()
{
// Create a sparse matrix. For now the size will be 10 x 10 elements
Matrix matrix = CreateMatrix(10);
// Create the right hand side vector. The size is the same as the matrix
// and all values will be 2.0.
Vector rightHandSideVector = new DenseVector(10, 2.0);
// Create a preconditioner. The possibilities are:
// 1) No preconditioner - Simply do not provide the solver with a preconditioner.
// 2) A simple diagonal preconditioner - Create an instance of the Diagonal class.
// 3) A ILU preconditioner - Create an instance of the IncompleteLu class.
// 4) A ILU preconditioner with pivoting and drop tolerances - Create an instance of the Ilutp class.
// Here we'll use the simple diagonal preconditioner.
// We need a link to the matrix so the pre-conditioner can do it's work.
IPreConditioner preconditioner = new Diagonal();
// Create a new iterator. This checks for convergence of the results of the
// iterative matrix solver.
// In this case we'll create the default iterator
IIterator iterator = Iterator.CreateDefault();
// Create the solver
MlkBiCgStab solver = new MlkBiCgStab(preconditioner, iterator);
// Now that all is set we can solve the matrix equation.
Vector solutionVector = solver.Solve(matrix, rightHandSideVector);
// Another way to get the values is by using the overloaded solve method
// In this case the solution vector needs to be of the correct size.
solver.Solve(matrix, rightHandSideVector, solutionVector);
// Finally you can check the reason the solver finished the iterative process
// by calling the SolutionStatus property on the iterator
ICalculationStatus status = iterator.Status;
if (status is CalculationCancelled)
Console.WriteLine("The user cancelled the calculation.");
if (status is CalculationIndetermined)
Console.WriteLine("Oh oh, something went wrong. The iterative process was never started.");
if (status is CalculationConverged)
Console.WriteLine("Yippee, the iterative process converged.");
if (status is CalculationDiverged)
Console.WriteLine("I'm sorry the iterative process diverged.");
if (status is CalculationFailure)
Console.WriteLine("Oh dear, the iterative process failed.");
if (status is CalculationStoppedWithoutConvergence)
Console.WriteLine("Oh dear, the iterative process did not converge.");
}
示例7: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
// Due to datatype "float" it can happen that solution will not converge for specific random matrix
// That's why we will do 4 tries and downgrade stop criterium each time
for (var iteration = 6; iteration > 3; iteration--)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var monitor = new Iterator(new IIterationStopCriterium<float>[]
{
new IterationCountStopCriterium(MaximumIterations),
new ResidualStopCriterium((float)Math.Pow(1.0/10.0, iteration))
});
var solver = new MlkBiCgStab(monitor);
var matrixX = solver.Solve(matrixA, matrixB);
if (!(monitor.Status is CalculationConverged))
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA * matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreApproximatelyEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0 / 10.0, iteration - 3));
}
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
示例8: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
for (var iteration = 5; iteration > 3; iteration--)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var monitor = new Iterator<Complex32>(
new IterationCountStopCriterium<Complex32>(1000),
new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration)));
var solver = new MlkBiCgStab();
var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);
if (monitor.Status != IterationStatus.Converged)
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA*matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float) Math.Pow(1.0/10.0, iteration - 3));
Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3));
}
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
示例9: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
// Due to datatype "float" it can happen that solution will not converge for specific random matrix
// That's why we will do 4 tries and downgrade stop criterion each time
for (var iteration = 6; iteration > 3; iteration--)
{
var matrixA = Matrix<float>.Build.Random(order, order, 1);
var matrixB = Matrix<float>.Build.Random(order, order, 1);
var monitor = new Iterator<float>(
new IterationCountStopCriterion<float>(MaximumIterations),
new ResidualStopCriterion<float>(Math.Pow(1.0/10.0, iteration)));
var solver = new MlkBiCgStab();
var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);
if (monitor.Status != IterationStatus.Converged)
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA*matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0/10.0, iteration - 3));
}
}
return;
}
}
示例10: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var vectorb = MatrixLoader.GenerateRandomDenseVector(order);
var monitor = new Iterator(new IIterationStopCriterium<double>[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium(1e-10),
});
var solver = new MlkBiCgStab(monitor);
var resultx = solver.Solve(matrixA, vectorb);
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var bReconstruct = matrixA * resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreApproximatelyEqual(vectorb[i], bReconstruct[i], 1e-7);
}
}
示例11: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
var matrixA = Matrix<double>.Build.Random(order, order, 1);
var vectorb = Vector<double>.Build.Random(order, 1);
var monitor = new Iterator<double>(
new IterationCountStopCriterion<double>(1000),
new ResidualStopCriterion<double>(1e-10));
var solver = new MlkBiCgStab();
var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA*resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i], matrixBReconstruct[i], 1e-7);
}
}
示例12: SolvePoissonMatrixAndBackMultiply
public void SolvePoissonMatrixAndBackMultiply()
{
// Create the matrix
var matrix = Matrix<double>.Build.Sparse(100, 100);
// Assemble the matrix. We assume we're solving the Poisson equation
// on a rectangular 10 x 10 grid
const int GridSize = 10;
// The pattern is:
// 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
for (var i = 0; i < matrix.RowCount; i++)
{
// Insert the first set of -1's
if (i > (GridSize - 1))
{
matrix[i, i - GridSize] = -1;
}
// Insert the second set of -1's
if (i > 0)
{
matrix[i, i - 1] = -1;
}
// Insert the centerline values
matrix[i, i] = 4;
// Insert the first trailing set of -1's
if (i < matrix.RowCount - 1)
{
matrix[i, i + 1] = -1;
}
// Insert the second trailing set of -1's
if (i < matrix.RowCount - GridSize)
{
matrix[i, i + GridSize] = -1;
}
}
// Create the y vector
var y = Vector<double>.Build.Dense(matrix.RowCount, 1);
// Create an iteration monitor which will keep track of iterative convergence
var monitor = new Iterator<double>(
new IterationCountStopCriterion<double>(MaximumIterations),
new ResidualStopCriterion<double>(ConvergenceBoundary),
new DivergenceStopCriterion<double>(),
new FailureStopCriterion<double>());
var solver = new MlkBiCgStab();
// Solve equation Ax = y
var x = matrix.SolveIterative(y, solver, monitor);
// Now compare the results
Assert.IsNotNull(x, "#02");
Assert.AreEqual(y.Count, x.Count, "#03");
// Back multiply the vector
var z = matrix.Multiply(x);
// Check that the solution converged
Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");
// Now compare the vectors
for (var i = 0; i < y.Count; i++)
{
Assert.GreaterOrEqual(ConvergenceBoundary, Math.Abs(y[i] - z[i]), "#05-" + i);
}
}
示例13: CanSolveForRandomVector
public void CanSolveForRandomVector([Values(4, 8, 10)] int order)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var vectorb = MatrixLoader.GenerateRandomDenseVector(order);
var monitor = new Iterator(new IIterationStopCriterium[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium(1e-10),
});
var solver = new MlkBiCgStab(monitor);
var resultx = solver.Solve(matrixA, vectorb);
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA * resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
}
}
示例14: SolvePoissonMatrixAndBackMultiply
public void SolvePoissonMatrixAndBackMultiply()
{
// Create the matrix
var matrix = new SparseMatrix(100);
// Assemble the matrix. We assume we're solving the Poisson equation
// on a rectangular 10 x 10 grid
const int GridSize = 10;
// The pattern is:
// 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
for (var i = 0; i < matrix.RowCount; i++)
{
// Insert the first set of -1's
if (i > (GridSize - 1))
{
matrix[i, i - GridSize] = -1;
}
// Insert the second set of -1's
if (i > 0)
{
matrix[i, i - 1] = -1;
}
// Insert the centerline values
matrix[i, i] = 4;
// Insert the first trailing set of -1's
if (i < matrix.RowCount - 1)
{
matrix[i, i + 1] = -1;
}
// Insert the second trailing set of -1's
if (i < matrix.RowCount - GridSize)
{
matrix[i, i + GridSize] = -1;
}
}
// Create the y vector
Vector<Complex> y = new DenseVector(matrix.RowCount, 1);
// Create an iteration monitor which will keep track of iterative convergence
var monitor = new Iterator(new IIterationStopCriterium<Complex>[]
{
new IterationCountStopCriterium(MaximumIterations),
new ResidualStopCriterium(ConvergenceBoundary),
new DivergenceStopCriterium(),
new FailureStopCriterium()
});
var solver = new MlkBiCgStab(monitor);
// Solve equation Ax = y
var x = solver.Solve(matrix, y);
// Now compare the results
Assert.IsNotNull(x, "#02");
Assert.AreEqual(y.Count, x.Count, "#03");
// Back multiply the vector
var z = matrix.Multiply(x);
// Check that the solution converged
Assert.IsTrue(monitor.Status is CalculationConverged, "#04");
// Now compare the vectors
for (var i = 0; i < y.Count; i++)
{
Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
}
}
示例15: SolveScaledUnitMatrixAndBackMultiply
public void SolveScaledUnitMatrixAndBackMultiply()
{
// Create the identity matrix
var matrix = SparseMatrix.Identity(100);
// Scale it with a funny number
matrix.Multiply(Math.PI, matrix);
// Create the y vector
var y = DenseVector.Create(matrix.RowCount, i => 1);
// Create an iteration monitor which will keep track of iterative convergence
var monitor = new Iterator<double>(new IIterationStopCriterium<double>[]
{
new IterationCountStopCriterium<double>(MaximumIterations),
new ResidualStopCriterium(ConvergenceBoundary),
new DivergenceStopCriterium(),
new FailureStopCriterium()
});
var solver = new MlkBiCgStab(monitor);
// Solve equation Ax = y
var x = solver.Solve(matrix, y);
// Now compare the results
Assert.IsNotNull(x, "#02");
Assert.AreEqual(y.Count, x.Count, "#03");
// Back multiply the vector
var z = matrix.Multiply(x);
// Check that the solution converged
Assert.IsTrue(monitor.HasConverged, "#04");
// Now compare the vectors
for (var i = 0; i < y.Count; i++)
{
Assert.IsTrue((y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
}
}