本文整理汇总了C#中MetricDB类的典型用法代码示例。如果您正苦于以下问题:C# MetricDB类的具体用法?C# MetricDB怎么用?C# MetricDB使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
MetricDB类属于命名空间,在下文中一共展示了MetricDB类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Build
/// <summary>
/// Build the index
/// </summary>
public virtual void Build(MetricDB db, int num_centers, Random rand)
{
this.DB = db;
var n = this.DB.Count;
// randomized has very good performance, even compared with more "intelligent" strategies
this.node_list = new List<Node> (num_centers);
var subset = RandomSets.GetRandomSubSet (num_centers, this.DB.Count, rand);
var H = new HashSet<int> (subset);
for (int centerID = 0; centerID < num_centers; ++centerID) {
this.node_list.Add (new Node (subset [centerID]));
}
var IDX = new SAT_Distal ();
IDX.Build (new SampleSpace("", db, subset), rand);
for (int docID = 0; docID < n; ++docID) {
if (docID % 1000 == 0) {
Console.WriteLine ("== Vor {0}/{1}, num_centers: {2}, db: {3}", docID + 1, n, num_centers, db.Name);
}
if (H.Contains(docID)) {
continue;
}
// var near = new Result(1);
// for (var centerID = 0; centerID < num_centers; ++centerID) {
// var node = this.node_list[centerID];
// var d = this.DB.Dist(this.DB[node.refID], this.DB[docID]);
// near.Push(centerID, d);
// }
// var _near = near.First;
var _near = IDX.SearchKNN (this.DB[docID], 1, new Result (1)).First;
this.node_list[_near.ObjID].Add(docID, _near.Dist);
}
}
示例2: Build
public virtual void Build(MetricDB db, int numcenters, int lambda, int seed)
{
this.LC_LIST = new LC[lambda];
LongParallel.For(0, lambda, (int i) => {
this.BuildOneClosure(this.LC_LIST, i, db, numcenters, new Random(seed+i));
});
}
示例3: EPListMeanPivots
public EPListMeanPivots(MetricDB DB, int seed, int num_pivs)
{
this.Items = null;
var pivs = new List<EPivot> (32);
var rand = new Random (seed);
var n = DB.Count;
var idxseq = new DynamicSequentialOrdered ();
idxseq.Build (DB, RandomSets.GetIdentity (DB.Count));
var tmp_items = new List<ItemPair> (DB.Count);
int next_piv = rand.Next (0, n);
for (int i = 0; i < num_pivs; ++i) {
var varX = 0.0;
double min_diff = double.MaxValue;
this.ComputeDistRow (next_piv, idxseq, rand, pivs, tmp_items);
for (int objID = 0; objID < this.Items.Length; ++objID) {
var u = this.Items [objID];
var diff = Math.Abs (u.Dist - pivs [u.ObjID].mean);
if (diff < min_diff) {
min_diff = diff;
next_piv = objID;
}
varX += diff * diff / n;
}
++i;
Console.WriteLine ("XXXXXX i: {0}, variance: {1}", i, varX);
}
this.Pivs = pivs.ToArray ();
Console.WriteLine("Number of pivots per group: {0}", this.Pivs.Length);
}
示例4: Build
/// <summary>
/// Build the index
/// </summary>
public virtual void Build(MetricDB db, int num_centers, Random rand, SequenceBuilder seq_builder = null)
{
this.DB = db;
var n = this.DB.Count;
// randomized has very good performance, even compared with more "intelligent" strategies
this.node_list = new List<Node> (num_centers);
var subset = RandomSets.GetRandomSubSet (num_centers, this.DB.Count, rand);
for (int centerID = 0; centerID < num_centers; ++centerID) {
this.node_list.Add (new Node (subset [centerID]));
}
var H = new HashSet<int> (subset);
for (int docID = 0; docID < n; ++docID) {
if (docID % 1000 == 0) {
Console.WriteLine ("== {0} {1}/{2}, num_centers: {3}, db: {4}", this, docID + 1, n, num_centers, db.Name);
}
if (H.Contains(docID)) {
continue;
}
var far = new Result(1);
for (var centerID = 0; centerID < num_centers; ++centerID) {
var node = this.node_list[centerID];
var d = this.DB.Dist(this.DB[node.refID], this.DB[docID]);
far.Push(centerID, -d);
}
var _far = far.First;
this.node_list[_far.docid].Add(docID, -_far.dist);
}
}
示例5: ComputeDistances
public static List<ItemPair> ComputeDistances(MetricDB db, IEnumerable<int> sample, object piv, List<ItemPair> output, out Stats stats, out int min_objID, out int max_objID)
{
if (output == null) {
output = new List<ItemPair>();
}
//var L = new Item[this.DOCS.Count];
max_objID = min_objID = -1;
stats = default(Stats);
stats.min = double.MaxValue;
stats.max = 0;
double mean = 0;
var count = 0;
foreach (var objID in sample) {
var dist = db.Dist(piv, db[objID]);
mean += dist;
output.Add (new ItemPair (objID, dist));
if (dist < stats.min) {
stats.min = dist;
min_objID = objID;
}
if (dist > stats.max) {
stats.max = dist;
max_objID = objID;
}
++count;
}
stats.mean = mean / count;
double stddev = 0;
foreach (var item in output) {
var m = item.Dist - stats.mean;
stddev += m * m;
}
stats.stddev = Math.Sqrt(stddev / count);
return output;
}
示例6: Build
public virtual void Build(MetricDB db, int num_pairs, int maxCandidates = -1)
{
this.DB = db;
this.Fingerprints = new BinQ8HammingSpace (1);
this.Sample = new SampleSpace("", this.DB, num_pairs * 2);
this.MaxCandidates = maxCandidates;
var n = this.DB.Count;
var A = new byte[n][];
int pc = this.DB.Count / 100 + 1;
int advance = 0;
var create_one = new Action<int> (delegate(int i) {
var fp = this.GetFP(this.DB[i]);
A[i] = fp;
if (advance % pc == 0) {
Console.WriteLine ("DEBUG {0} ({1}/{2}), db: {3}, num_pairs: {4}, timestamp: {5}", this, advance, n, db.Name, num_pairs, DateTime.Now);
}
advance++;
});
ParallelOptions ops = new ParallelOptions();
ops.MaxDegreeOfParallelism = -1;
Parallel.For (0, n, create_one);
foreach (var fp in A) {
this.Fingerprints.Add( fp );
}
var s = new Sequential ();
s.Build (this.Fingerprints);
this.InternalIndex = s;
}
示例7: Build
/// <summary>
/// Build the index
/// </summary>
public virtual void Build(MetricDB db, int bsize, Random rand)
{
this.DB = db;
var n = this.DB.Count;
// randomized has very good performance, even compared with more "intelligent" strategies
var dseq = new DynamicSequentialOrdered ();
dseq.Build (db, rand);
this.NODES = new List<Node> (n / bsize + 1);
var L = new List<ItemPair> (n);
while (dseq.Count > 0) {
if (this.NODES.Count % 100 == 0) {
Console.WriteLine ("XXX {0}, bucketSize: {1}, remain {2}/{3}, db: {4}, date-time: {5}",
this, bsize, dseq.Count, db.Count, Path.GetFileName(db.Name), DateTime.Now);
}
var refID = dseq.GetAnyItem ();
dseq.Remove (refID);
L.Clear ();
dseq.ComputeDistances (this.DB[refID], L);
var near = new Result(bsize);
var far = new Result (1);
dseq.AppendKExtremes (near, far, L);
var node = new Node (refID);
this.NODES.Add (node);
dseq.Remove (near);
foreach (var p in near) {
node.Add(p.ObjID, p.Dist);
}
}
}
示例8: Build
public void Build(MetricDB db, int k, Index ref_index)
{
this.DB = db;
this.K = k;
this.R = ref_index;
int sigma = this.R.DB.Count;
this.INVINDEX = new List<List<int>> (sigma);
for (int i = 0; i < sigma; ++i) {
this.INVINDEX.Add(new List<int>());
}
var A = new int[this.DB.Count][];
int count = 0;
var compute_one = new Action<int>(delegate(int objID) {
var u = this.GetKnr(this.DB[objID], this.K);
A[objID] = u;
++count;
if (count % 1000 == 0) {
Console.WriteLine ("==== {0}/{1} db: {2}, k: {3}", count, this.DB.Count, this.DB.Name, k);
}
});
ParallelOptions ops = new ParallelOptions();
ops.MaxDegreeOfParallelism = -1;
Parallel.ForEach(new ListGen<int>((int i) => i, this.DB.Count), ops, compute_one);
for (int objID = 0; objID < this.DB.Count; ++objID) {
var u = A[objID];
for (int i = 0; i < this.K; ++i) {
this.INVINDEX[u[i]].Add (objID);
}
}
}
示例9: Build
/// <summary>
/// Build the index
/// </summary>
public virtual void Build(MetricDB db, Random rand)
{
this.DB = db;
var n = this.DB.Count;
var items = RandomSets.GetIdentity (n);
this.root = new Node (items, db, rand, false);
}
示例10: Build
/// <summary>
/// Build the index
/// </summary>
public virtual void Build(MetricDB db, int num_centers, Random rand, SequenceBuilder seq_builder = null)
{
this.DB = db;
var n = this.DB.Count;
// randomized has very good performance, even compared with more "intelligent" strategies
this.node_list = new List<Node> (num_centers);
var subset = RandomSets.GetRandomSubSet (num_centers, this.DB.Count, rand);
for (int centerID = 0; centerID < num_centers; ++centerID) {
this.node_list.Add (new Node (subset [centerID]));
}
var H = new HashSet<int> (subset);
for (int docID = 0; docID < n; ++docID) {
if (H.Contains(docID)) {
continue;
}
var near = new Result(1);
var far = new Result(1);
for (var centerID = 0; centerID < num_centers; ++centerID) {
var node = this.node_list[centerID];
var d = this.DB.Dist(this.DB[node.refID], this.DB[docID]);
near.Push(centerID, d);
far.Push(centerID, -d);
}
var _near = near.First;
var _far = far.First;
this.node_list[_near.ObjID].AddNear(docID, _near.Dist);
this.node_list[_far.ObjID].AddFar(docID, -_far.Dist);
}
}
示例11: Build
public virtual void Build(MetricDB original, Index refs, int k)
{
this.K = k;
this.IdxRefs = refs;
var n = original.Count;
this.Fingerprints = new List<int[]> (n);
for (int i = 0; i < n; ++i) {
this.Fingerprints.Add (null);
}
var tasks = Environment.ProcessorCount << 3;
int blocksize = n / tasks;
int advance = 0;
long minElapsedTicks = 20000000; // control the print rate
long prevTicks = DateTime.Now.Ticks;
long currTicks;
var create_block = new Action<int> (delegate(int blockID) {
var sp = blockID * blocksize;
var ep = Math.Min (n, sp + blocksize);
currTicks = DateTime.Now.Ticks;
if (advance == 0 || currTicks - prevTicks > minElapsedTicks) {
Console.WriteLine ("KnrFP {0} ({1}/{2}), db: {3}, num_refs: {4}, K: {5}, timestamp: {6}",
this, advance, n, Path.GetFileName(original.Name), this.IdxRefs.DB.Count, this.K, DateTime.Now);
prevTicks = currTicks;
}
for (; sp < ep; ++sp) {
var fp = this.GetFP(original[sp]);
this.Fingerprints[sp] = fp;
advance++;
}
});
LongParallel.For (0, 1 + n / blocksize, create_block);
Console.WriteLine ("done");
}
示例12: Build
public void Build(MetricDB db, Random rand, int num_refs, int K=7, int maxcand=1024, SequenceBuilder seq_builder=null)
{
var sample = new SampleSpace ("", db, num_refs, rand);
var sat = new SAT_Distal ();
sat.Build (sample, RandomSets.GetRandom());
this.Build (db, sat, K, maxcand, seq_builder);
}
示例13: Build
public virtual void Build(MetricDB original, MetricDB pairs)
{
this.Fingerprints = new BinQ8HammingSpace (1);
this.Pairs = pairs;
var n = original.Count;
var A = new byte[n][];
int blocksize = 1000;
int pc = original.Count / 100 + 1;
int advance = 0;
var create_block = new Action<int> (delegate(int blockID) {
var sp = blockID * blocksize;
var ep = Math.Min (n, sp + blocksize);
for (; sp < ep; ++sp) {
var fp = this.GetFP(original[sp]);
A[sp] = fp;
if (advance % pc == 0) {
Console.WriteLine ("DEBUG {0} ({1}/{2}), db: {3}, num_pairs: {4}, timestamp: {5}", this, advance, n, original.Name, this.Pairs.Count/2, DateTime.Now);
}
advance++;
}
});
ParallelOptions ops = new ParallelOptions();
ops.MaxDegreeOfParallelism = 1;
Parallel.For (0, 1 + n/blocksize, create_block);
foreach (var fp in A) {
this.Fingerprints.Add( fp );
}
}
示例14: EstimateQueryStatistics
public static void EstimateQueryStatistics(MetricDB DB, Random rand, int num_queries, int sample_size, out double mean, out double varY, out double qrad)
{
var n = DB.Count;
var N = num_queries * sample_size;
mean = 0.0;
var square_mean = 0.0;
qrad = 0;
for (int qID = 0; qID < num_queries; ++qID) {
var q = DB[ rand.Next(0, n) ];
var min = double.MaxValue;
for (int sampleID = 0; sampleID < sample_size; ++sampleID) {
var u = DB[ rand.Next(0, n) ];
var d = DB.Dist(q, u);
mean += d / N;
square_mean += d * d / N;
if (d > 0) {
min = Math.Min(min, d);
}
}
qrad = Math.Max (min, qrad);
// if (qrad == 0) {
// qrad = min;
// } else {
// qrad = (min + qrad) * 0.5;
// }
}
varY = square_mean - mean * mean;
}
示例15: Build
public void Build(MetricDB db, ANNISetup setup, int num_indexes, int num_tasks = -1)
{
// num_build_processors = 1;
this.DB = db;
var _rows = new ANNI[num_indexes];
LongParallel.For (0, num_indexes, (int i) => {
_rows [i] = new ANNI ();
_rows [i].InternalBuild (setup, 0, 1.0, db, num_indexes);
}, num_tasks);
// ParallelOptions ops = new ParallelOptions ();
// ops.MaxDegreeOfParallelism = num_processors;
// Parallel.For (0, num_indexes, ops, (int i) => {
// _rows [i] = new ILC ();
// _rows [i].Build (db, num_indexes, pivsel);
// });
this.leader = new NANNI();
this.leader.Build(_rows [0]);
this.rows = new ANNI[num_indexes - 1];
for (int i = 1; i < num_indexes; ++i) {
this.rows[i - 1] = _rows[i];
}
}