当前位置: 首页>>代码示例>>C#>>正文


C# MersenneTwister.NextDouble方法代码示例

本文整理汇总了C#中MersenneTwister.NextDouble方法的典型用法代码示例。如果您正苦于以下问题:C# MersenneTwister.NextDouble方法的具体用法?C# MersenneTwister.NextDouble怎么用?C# MersenneTwister.NextDouble使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MersenneTwister的用法示例。


在下文中一共展示了MersenneTwister.NextDouble方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SampleKnownValues

 public void SampleKnownValues()
 {
     var mt = new MersenneTwister(0);
     Assert.AreEqual(mt.NextDouble(), 0.5488135024320365);
     Assert.AreEqual(mt.NextDouble(), 0.5928446165269344);
     Assert.AreEqual(mt.NextDouble(), 0.7151893651381110);
     Assert.AreEqual(mt.NextDouble(), 0.8442657442866512);
 }
开发者ID:KeithVanderzanden,项目名称:mmbot,代码行数:8,代码来源:MersenneTwisterTests.cs

示例2: SampleKnownValues

 public void SampleKnownValues()
 {
     var mt = new MersenneTwister(0);
     Assert.AreEqual(mt.NextDouble(), 0.5488135023042560);
     Assert.AreEqual(mt.NextDouble(), 0.5928446163889021);
     Assert.AreEqual(mt.NextDouble(), 0.7151893649715930);
     Assert.AreEqual(mt.NextDouble(), 0.8442657440900803);
 }
开发者ID:rmundy,项目名称:mathnet-numerics,代码行数:8,代码来源:MersenneTwisterTests.cs

示例3: InitTree

 public static void InitTree(ISymbolicExpressionTree tree, MersenneTwister twister, List<string> varNames) {
   foreach (var node in tree.IterateNodesPostfix()) {
     if (node is VariableTreeNode) {
       var varNode = node as VariableTreeNode;
       varNode.Weight = twister.NextDouble() * 20.0 - 10.0;
       varNode.VariableName = varNames[twister.Next(varNames.Count)];
     } else if (node is ConstantTreeNode) {
       var constantNode = node as ConstantTreeNode;
       constantNode.Value = twister.NextDouble() * 20.0 - 10.0;
     }
   }
 }
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:12,代码来源:Util.cs

示例4: Main

  public override void Main() {
    DateTime start = DateTime.UtcNow;

    QuadraticAssignmentProblem qap;
    if (vars.Contains("qap")) qap = vars.qap;
    else {
      var provider = new DreznerQAPInstanceProvider();
      var instance = provider.GetDataDescriptors().Single(x => x.Name == "dre56");
      var data = provider.LoadData(instance);
      qap = new QuadraticAssignmentProblem();
      qap.Load(data);
      vars.qap = qap;
    }

    const uint seed = 0;
    const int popSize = 100;
    const int generations = 1000;
    const double mutationRate = 0.05;

    var random = new MersenneTwister(seed);
    var population = new Permutation[popSize];
    var qualities = new double[popSize];
    var nextGen = new Permutation[popSize];
    var nextQual = new double[popSize];

    var qualityChart = new DataTable("Quality Chart");
    var qualityRow = new DataRow("Best Quality");
    qualityChart.Rows.Add(qualityRow);
    vars.qualityChart = qualityChart;

    for (int i = 0; i < popSize; i++) {
      population[i] = new Permutation(PermutationTypes.Absolute, qap.Weights.Rows, random);
      qualities[i] = QAPEvaluator.Apply(population[i], qap.Weights, qap.Distances);
    }
    var bestQuality = qualities.Min();
    var bestQualityGeneration = 0;

    for (int g = 0; g < generations; g++) {
      var parents = population.SampleProportional(random, 2 * popSize, qualities, windowing: true, inverseProportional: true).ToArray();
      for (int i = 0; i < popSize; i++) {
        nextGen[i] = PartiallyMatchedCrossover.Apply(random, parents[i * 2], parents[i * 2 + 1]);
        if (random.NextDouble() < mutationRate) Swap2Manipulator.Apply(random, nextGen[i]);
        nextQual[i] = QAPEvaluator.Apply(nextGen[i], qap.Weights, qap.Distances);
        if (nextQual[i] < bestQuality) {
          bestQuality = nextQual[i];
          bestQualityGeneration = g;
        }
      }
      qualityRow.Values.Add(bestQuality);
      Array.Copy(nextGen, population, popSize);
      Array.Copy(nextQual, qualities, popSize);
    }

    vars.elapsed = new TimeSpanValue(DateTime.UtcNow - start);
    vars.bestQuality = bestQuality;
    vars.bestQualityFoundAt = bestQualityGeneration;
  }
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:57,代码来源:GAQAPScriptSource.cs

示例5: CreateRandomDataset

 public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) {
   double[,] data = new double[rows, columns];
   for (int i = 0; i < rows; i++) {
     for (int j = 0; j < columns; j++) {
       data[i, j] = twister.NextDouble() * 2.0 - 1.0;
     }
   }
   IEnumerable<string> variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString()));
   Dataset ds = new Dataset(variableNames, data);
   return ds;
 }
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:11,代码来源:Util.cs

示例6: MyClassInitialize

    public static void MyClassInitialize(TestContext testContext) {
      random = new MersenneTwister();
      coordinates = new DoubleMatrix(ProblemSize, 2);
      distances = new DistanceMatrix(ProblemSize, ProblemSize);
      for (var i = 0; i < ProblemSize; i++) {
        coordinates[i, 0] = random.Next(ProblemSize * 10);
        coordinates[i, 1] = random.Next(ProblemSize * 10);
      }
      for (var i = 0; i < ProblemSize - 1; i++) {
        for (var j = i + 1; j < ProblemSize; j++) {
          distances[i, j] = Math.Round(Math.Sqrt(Math.Pow(coordinates[i, 0] - coordinates[j, 0], 2) + Math.Pow(coordinates[i, 1] - coordinates[j, 1], 2)));
          distances[j, i] = distances[i, j];
        }
      }

      probabilities = new DoubleArray(ProblemSize);
      for (var i = 0; i < ProblemSize; i++) {
        probabilities[i] = random.NextDouble();
      }

      realizations = new ItemList<BoolArray>(RealizationsSize);
      for (var i = 0; i < RealizationsSize; i++) {
        var countOnes = 0;
        var newRealization = new BoolArray(ProblemSize);
        while (countOnes < 4) { //only generate realizations with at least 4 cities visited
          countOnes = 0;
          for (var j = 0; j < ProblemSize; j++) {
            newRealization[j] = random.NextDouble() < probabilities[j];
            if (newRealization[j]) countOnes++;
          }
        }
        realizations.Add(newRealization);
      }

      tour = new Permutation(PermutationTypes.RelativeUndirected, ProblemSize, random);
    }
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:36,代码来源:PTSPMoveEvaluatorTest.cs

示例7: OverlayIdealGrid


//.........这里部分代码省略.........
            {
                // record the positions of the corners
                corners.Add(grid[grid_tx, grid_ty]);
                corners.Add(grid[grid_bx, grid_ty]);
                corners.Add(grid[grid_bx, grid_by]);
                corners.Add(grid[grid_tx, grid_by]);

                double dx, dy;

                double x0 = grid[grid_tx, grid_ty].x;
                double y0 = grid[grid_tx, grid_ty].y;
                double x1 = grid[grid_bx, grid_ty].x;
                double y1 = grid[grid_bx, grid_ty].y;
                double x2 = grid[grid_tx, grid_by].x;
                double y2 = grid[grid_tx, grid_by].y;
                double x3 = grid[grid_bx, grid_by].x;
                double y3 = grid[grid_bx, grid_by].y;

                polygon2D perimeter = new polygon2D();
                perimeter.Add((float)x0, (float)y0);
                perimeter.Add((float)x1, (float)y1);
                perimeter.Add((float)x3, (float)y3);
                perimeter.Add((float)x2, (float)y2);

                int grid_width = grid_bx - grid_tx;
                int grid_height = grid_by - grid_ty;

                int min_hits = 0;
                double min_dx = 0, min_dy = 0;

                // try various perimeter sizes
                double min_dist = double.MaxValue;
                int max_perim_size_tries = 100;
                polygon2D best_perimeter = perimeter;
                MersenneTwister rnd = new MersenneTwister(random_seed);
                for (int perim_size = 0; perim_size < max_perim_size_tries; perim_size++)
                {
                    // try a small range of translations
                    for (int nudge_x = -10; nudge_x <= 10; nudge_x++)
                    {
                        for (int nudge_y = -5; nudge_y <= 5; nudge_y++)
                        {
                            // create a perimeter at this scale and translation
                            polygon2D temp_perimeter = perimeter.Scale(1.0f + (perim_size * 0.1f / max_perim_size_tries));
                            temp_perimeter = temp_perimeter.ScaleSideLength(0, 0.95f + ((float)rnd.NextDouble() * 0.1f));
                            temp_perimeter = temp_perimeter.ScaleSideLength(2, 0.95f + ((float)rnd.NextDouble() * 0.1f));
                            for (int i = 0; i < temp_perimeter.x_points.Count; i++)
                            {
                                temp_perimeter.x_points[i] += nudge_x;
                                temp_perimeter.y_points[i] += nudge_y;
                            }

                            // create a grid based upon the perimeter
                            grid2D temp_overlay_grid = new grid2D(grid_width, grid_height, temp_perimeter, 0, false);

                            // how closely does the grid fit the actual observations ?
                            double temp_min_dist = min_dist;
                            BestFit(grid_tx, grid_ty, grid,
                                    temp_overlay_grid, ref min_dist,
                                    ref min_dx, ref min_dy, ref min_hits,
                                    ref grid_offset_x, ref grid_offset_y);

                            // record the closest fit
                            if (temp_min_dist < min_dist)
                            {
                                best_perimeter = temp_perimeter;
                                overlay_grid = temp_overlay_grid;
                            }
                        }
                    }
                }

                if (min_hits > 0)
                {
                    dx = min_dx;
                    dy = min_dy;

                    Console.WriteLine("dx: " + dx.ToString());
                    Console.WriteLine("dy: " + dy.ToString());

                    x0 += dx;
                    y0 += dy;
                    x1 += dx;
                    y1 += dy;
                    x2 += dx;
                    y2 += dy;
                    x3 += dx;
                    y3 += dy;

                    perimeter = new polygon2D();
                    perimeter.Add((float)x0, (float)y0);
                    perimeter.Add((float)x1, (float)y1);
                    perimeter.Add((float)x3, (float)y3);
                    perimeter.Add((float)x2, (float)y2);
                    overlay_grid = new grid2D(grid_width, grid_height, perimeter, 0, false);
                }
            }

            return (overlay_grid);
        }
开发者ID:kasertim,项目名称:sentience,代码行数:101,代码来源:calibration.cs

示例8: FitCurve

        /// <summary>
        /// fits a curve to the given grid using the given centre of distortion
        /// </summary>
        /// <param name="grid">detected grid dots</param>
        /// <param name="overlay_grid">overlayed ideal rectified grid</param>
        /// <param name="centre_of_distortion">centre of lens distortion</param>
        /// <param name="curve">curve to be fitted</param>
        private static void FitCurve(calibrationDot[,] grid,
                                     grid2D overlay_grid,
                                     calibrationDot centre_of_distortion,
                                     polynomial curve,
                                     double noise, MersenneTwister rnd,
                                     int grid_offset_x, int grid_offset_y)
        {
            double[] prev_col = new double[grid.GetLength(1) * 2];
            double[] col = new double[prev_col.Length];

            double half_noise = noise / 2;
            double rectified_x, rectified_y;

            for (int pass = 0; pass < 1; pass++)
            {
                // for every detected dot
                for (int grid_x = 0; grid_x < grid.GetLength(0); grid_x++)
                {
                    double prev_rectified_radial_dist = 0;
                    double prev_actual_radial_dist = 0;
                    int prev_grid_y = -1;
                    for (int grid_y = 0; grid_y < grid.GetLength(1); grid_y++)
                    {
                        if (grid[grid_x, grid_y] != null)
                        {
                            if ((grid_x + grid_offset_x < overlay_grid.line_intercepts.GetLength(0)) &&
                                (grid_y + grid_offset_y < overlay_grid.line_intercepts.GetLength(1)) &&
                                (grid_x + grid_offset_x >= 0) && (grid_y + grid_offset_y >= 0))
                            {
                                // find the rectified distance of the dot from the centre of distortion
                                rectified_x = overlay_grid.line_intercepts[grid_x + grid_offset_x, grid_y + grid_offset_y, 0];
                                rectified_y = overlay_grid.line_intercepts[grid_x + grid_offset_x, grid_y + grid_offset_y, 1];
                                if (pass > 0)
                                {
                                    rectified_x += (((rnd.NextDouble() * noise) - half_noise) * 0.1);
                                    rectified_y += (((rnd.NextDouble() * noise) - half_noise) * 0.1);
                                }

                                //double rectified_x = overlay_grid.line_intercepts[grid_x + grid_offset_x, grid_y + grid_offset_y, 0];
                                //double rectified_y = overlay_grid.line_intercepts[grid_x + grid_offset_x, grid_y + grid_offset_y, 1];
                                double rectified_dx = rectified_x - centre_of_distortion.x;
                                double rectified_dy = rectified_y - centre_of_distortion.y;
                                double rectified_radial_dist = Math.Sqrt(rectified_dx * rectified_dx + rectified_dy * rectified_dy);

                                // find the actual raw image distance of the dot from the centre of distortion
                                //double actual_x = grid[grid_x, grid_y].x + (((rnd.NextDouble() * noise) - half_noise) * 2);
                                //double actual_y = grid[grid_x, grid_y].y + (((rnd.NextDouble() * noise) - half_noise) * 2);
                                double actual_x = grid[grid_x, grid_y].x;
                                double actual_y = grid[grid_x, grid_y].y;
                                double actual_dx = actual_x - centre_of_distortion.x;
                                double actual_dy = actual_y - centre_of_distortion.y;
                                double actual_radial_dist = Math.Sqrt(actual_dx * actual_dx + actual_dy * actual_dy);

                                // plot
                                curve.AddPoint(rectified_radial_dist, actual_radial_dist);

                                col[(grid_y * 2)] = rectified_radial_dist;
                                col[(grid_y * 2) + 1] = actual_radial_dist;

                                prev_rectified_radial_dist = rectified_radial_dist;
                                prev_actual_radial_dist = actual_radial_dist;
                                prev_grid_y = grid_y;
                            }
                        }
                    }

                    for (int i = 0; i < col.Length; i++)
                        prev_col[i] = col[i];
                }
            }

            // find the best fit curve
            curve.Solve();
        }
开发者ID:kasertim,项目名称:sentience,代码行数:81,代码来源:calibration.cs

示例9: AllArchitectureAlteringOperatorsDistributionTest

    public void AllArchitectureAlteringOperatorsDistributionTest() {
      var trees = new List<ISymbolicExpressionTree>();
      var newTrees = new List<ISymbolicExpressionTree>();
      var grammar = Grammars.CreateArithmeticAndAdfGrammar();
      var random = new MersenneTwister(31415);
      SymbolicExpressionTreeStringFormatter formatter = new SymbolicExpressionTreeStringFormatter();
      IntValue maxTreeSize = new IntValue(MAX_TREE_LENGTH);
      IntValue maxTreeHeigth = new IntValue(MAX_TREE_DEPTH);
      IntValue maxDefuns = new IntValue(3);
      IntValue maxArgs = new IntValue(3);
      for (int i = 0; i < POPULATION_SIZE; i++) {
        var tree = ProbabilisticTreeCreator.Create(random, grammar, MAX_TREE_LENGTH, MAX_TREE_DEPTH);
        Util.IsValid(tree);
        trees.Add(tree);
      }
      Stopwatch stopwatch = new Stopwatch();
      int failedEvents = 0;
      for (int g = 0; g < N_ITERATIONS; g++) {
        for (int i = 0; i < POPULATION_SIZE; i++) {
          if (random.NextDouble() < 0.5) {
            // manipulate
            stopwatch.Start();
            var selectedTree = (ISymbolicExpressionTree)trees.SampleRandom(random).Clone();
            var oldTree = (ISymbolicExpressionTree)selectedTree.Clone();
            bool success = false;
            int sw = random.Next(6);
            switch (sw) {
              case 0: success = ArgumentCreater.CreateNewArgument(random, selectedTree, MAX_TREE_LENGTH, MAX_TREE_DEPTH, 3, 3); break;
              case 1: success = ArgumentDeleter.DeleteArgument(random, selectedTree, 3, 3); break;
              case 2: success = ArgumentDuplicater.DuplicateArgument(random, selectedTree, 3, 3); break;
              case 3: success = SubroutineCreater.CreateSubroutine(random, selectedTree, MAX_TREE_LENGTH, MAX_TREE_DEPTH, 3, 3); break;
              case 4: success = SubroutineDuplicater.DuplicateSubroutine(random, selectedTree, 3, 3); break;
              case 5: success = SubroutineDeleter.DeleteSubroutine(random, selectedTree, 3, 3); break;
            }
            stopwatch.Stop();
            if (!success) failedEvents++;
            Util.IsValid(selectedTree);
            newTrees.Add(selectedTree);
          } else {
            stopwatch.Start();
            // crossover
            SymbolicExpressionTree par0 = null;
            SymbolicExpressionTree par1 = null;
            do {
              par0 = (SymbolicExpressionTree)trees.SampleRandom(random).Clone();
              par1 = (SymbolicExpressionTree)trees.SampleRandom(random).Clone();
            } while (par0.Length > MAX_TREE_LENGTH || par1.Length > MAX_TREE_LENGTH);
            var newTree = SubtreeCrossover.Cross(random, par0, par1, 0.9, MAX_TREE_LENGTH, MAX_TREE_DEPTH);
            stopwatch.Stop();
            Util.IsValid(newTree);
            newTrees.Add(newTree);
          }
        }
        trees = new List<ISymbolicExpressionTree>(newTrees);
        newTrees.Clear();
      }
      var msPerOperation = stopwatch.ElapsedMilliseconds / ((double)POPULATION_SIZE * (double)N_ITERATIONS);
      Console.WriteLine("AllArchitectureAlteringOperators: " + Environment.NewLine +
        "Operations / s: ~" + Math.Round(1000.0 / (msPerOperation)) + "operations / s)" + Environment.NewLine +
        "Failed events: " + failedEvents * 100.0 / (double)(POPULATION_SIZE * N_ITERATIONS / 2.0) + "%" + Environment.NewLine +
        Util.GetSizeDistributionString(trees, 200, 5) + Environment.NewLine +
        Util.GetFunctionDistributionString(trees) + Environment.NewLine +
        Util.GetNumberOfSubtreesDistributionString(trees) + Environment.NewLine +
        Util.GetTerminalDistributionString(trees) + Environment.NewLine
        );

      Assert.IsTrue(failedEvents * 100.0 / (POPULATION_SIZE * N_ITERATIONS / 2.0) < 75.0); // 25% of architecture operations must succeed
      //mkommend: commented due to performance issues on the builder
      // Assert.IsTrue(Math.Round(1000.0 / (msPerOperation)) > 800); // must achieve more than 800 ops per second
    }
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:70,代码来源:AllArchitectureAlteringOperatorsTest.cs

示例10: GenerateValues

    protected override List<List<double>> GenerateValues() {
      List<List<double>> data = new List<List<double>>();
      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
        data.Add(Enumerable.Range(0, TestPartitionEnd)
          .Select(_ => xRandom.NextDouble())
          .ToList());
      }

      var random = new MersenneTwister();
      var selectedFeatures =
        Enumerable.Range(0, AllowedInputVariables.Count())
        .Where(_ => random.NextDouble() < selectionProbability)
        .ToArray();

      w = selectedFeatures.Select(_ => weightRandom.NextDouble()).ToArray();
      var target = new List<double>();
      for (int i = 0; i < data[0].Count; i++) {
        var s = selectedFeatures
          .Select(index => data[index][i])
          .ToArray();
        target.Add(ScalarProd(s, w));
      }
      var targetSigma = target.StandardDeviation();
      var noisePrng = new NormalDistributedRandom(random, 0, targetSigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));

      data.Add(target.Select(t => t + noisePrng.NextDouble()).ToList());

      // set property listing the selected features as string[]
      this.selectedFeatures = selectedFeatures.Select(i => AllowedInputVariables[i]).ToArray();
      optimalRSquared = 1 - noiseRatio;
      return data;
    }
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:32,代码来源:FeatureSelection.cs

示例11: UpdateRealizations

 private void UpdateRealizations() {
   var realizations = new ItemList<BoolArray>(RealizationsSize);
   var rand = new MersenneTwister();
   for (var i = 0; i < RealizationsSize; i++) {
     var newRealization = new BoolArray(Probabilities.Length);
     var countOnes = 0;
     do {
       countOnes = 0;
       for (var j = 0; j < Probabilities.Length; j++) {
         newRealization[j] = Probabilities[j] < rand.NextDouble();
         if (newRealization[j]) countOnes++;
       }
       // only generate realizations with at least 4 cities visited
     } while (countOnes < 4 && Probabilities.Length > 3);
     realizations.Add(newRealization);
   }
   Realizations = realizations;
 }
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:18,代码来源:EstimatedPTSP.cs

示例12: Sample

    void Sample()
    {
        Debug.Log("GENERATING RANDOM NUMBERS WITH SEED: " + seed);
        mrand = new MersenneTwister(seed);
        randomList = new ArrayList();
        for (int i = 0; i < samplig_size; i++) {

            double myval, rn;

            switch (op)
            {
                case MersenneWindowOptionsType.INT:
                    rn = mrand.Next();
                break;

                case MersenneWindowOptionsType.FLOAT:
                    rn = mrand.NextSingle(true);
                break;

                case MersenneWindowOptionsType.DOUBLE:
                    rn = mrand.NextDouble(true);
                break;

                default:
                    rn = mrand.Next();
                break;
            }

            if (normalizeToggle) {
                myval = UnityNormalDistribution.toNormalDistribution(rn, temperature);
            } else {
                myval = rn;
            }

            randomList.Add(myval);
        }
        randomList.Sort();
        this.Repaint();
    }
开发者ID:tucano,项目名称:UnityMersenneTwister,代码行数:39,代码来源:MersenneDebugWindow.cs

示例13: Test

		public static void Test()
		{
			int i;

			MersenneTwister mt = new MersenneTwister();

			Console.WriteLine("1000 outputs of genrand_int32()");
			for (i = 0; i < 1000; i++)
			{
				Console.Write("{0} ", mt.NextUnsigned());
				if (i % 5 == 4) Console.WriteLine();
			}

			Console.ReadLine();
			Console.WriteLine("1000 outputs of genrand_real2");
			for (i = 0; i < 1000; i++)
			{
				Console.Write("{0} ", mt.NextDouble());
				if (i % 5 == 4) Console.WriteLine();
			}
		}
开发者ID:dw4dev,项目名称:Phalanger,代码行数:21,代码来源:MersenneTwister.cs


注:本文中的MersenneTwister.NextDouble方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。