本文整理汇总了C#中MatrixF.Clone方法的典型用法代码示例。如果您正苦于以下问题:C# MatrixF.Clone方法的具体用法?C# MatrixF.Clone怎么用?C# MatrixF.Clone使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MatrixF
的用法示例。
在下文中一共展示了MatrixF.Clone方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: EigenvalueDecompositionF
//--------------------------------------------------------------
/// <summary>
/// Creates the eigenvalue decomposition of the given matrix.
/// </summary>
/// <param name="matrixA">The square matrix A.</param>
/// <exception cref="ArgumentNullException">
/// <paramref name="matrixA"/> is <see langword="null"/>.
/// </exception>
/// <exception cref="ArgumentException">
/// <paramref name="matrixA"/> is non-square (rectangular).
/// </exception>
public EigenvalueDecompositionF(MatrixF matrixA)
{
if (matrixA == null)
throw new ArgumentNullException("matrixA");
if (matrixA.IsSquare == false)
throw new ArgumentException("The matrix A must be square.", "matrixA");
_n = matrixA.NumberOfColumns;
_d = new VectorF(_n);
_e = new VectorF(_n);
_isSymmetric = matrixA.IsSymmetric;
if (_isSymmetric)
{
_v = matrixA.Clone();
// Tridiagonalize.
ReduceToTridiagonal();
// Diagonalize.
TridiagonalToQL();
}
else
{
_v = new MatrixF(_n, _n);
// Abort if A contains NaN values.
// If we continue with NaN values, we run into an infinite loop.
for (int i = 0; i < _n; i++)
{
for (int j = 0; j < _n; j++)
{
if (Numeric.IsNaN(matrixA[i, j]))
{
_e.Set(float.NaN);
_v.Set(float.NaN);
_d.Set(float.NaN);
return;
}
}
}
// Storage of nonsymmetric Hessenberg form.
MatrixF matrixH = matrixA.Clone();
// Working storage for nonsymmetric algorithm.
float[] ort = new float[_n];
// Reduce to Hessenberg form.
ReduceToHessenberg(matrixH, ort);
// Reduce Hessenberg to real Schur form.
HessenbergToRealSchur(matrixH);
}
}
示例2: QRDecompositionF
//--------------------------------------------------------------
/// <summary>
/// Creates the QR decomposition of the given matrix.
/// </summary>
/// <param name="matrixA">
/// The matrix A. (Can be rectangular. NumberOfRows must be ≥ NumberOfColumns.)
/// </param>
/// <remarks>
/// The QR decomposition is computed by Householder reflections.
/// </remarks>
/// <exception cref="ArgumentNullException">
/// <paramref name="matrixA"/> is <see langword="null"/>.
/// </exception>
/// <exception cref="ArgumentException">
/// The number of rows must be greater than or equal to the number of columns.
/// </exception>
public QRDecompositionF(MatrixF matrixA)
{
if (matrixA == null)
throw new ArgumentNullException("matrixA");
if (matrixA.NumberOfRows < matrixA.NumberOfColumns)
throw new ArgumentException("The number of rows must be greater than or equal to the number of columns.", "matrixA");
// Initialize.
_qr = matrixA.Clone();
_m = matrixA.NumberOfRows;
_n = matrixA.NumberOfColumns;
_rDiagonal = new float[_n];
// Main loop.
for (int k = 0; k < _n; k++)
{
// Compute 2-norm of k-th column without under/overflow.
float norm = 0;
for (int i = k; i < _m; i++)
norm = MathHelper.Hypotenuse(norm, _qr[i, k]);
if (norm != 0) // TODO: Maybe a comparison with an epsilon tolerance is required here!?
{
// Form k-th Householder vector.
if (_qr[k, k] < 0)
norm = -norm;
for (int i = k; i < _m; i++)
_qr[i, k] /= norm;
_qr[k, k] += 1;
// Apply transformation to remaining columns.
for (int j = k + 1; j < _n; j++)
{
float s = 0;
for (int i = k; i < _m; i++)
s += _qr[i, k] * _qr[i, j];
s = -s / _qr[k, k];
for (int i = k; i < _m; i++)
_qr[i, j] += s * _qr[i, k];
}
}
_rDiagonal[k] = -norm;
}
}
示例3: Absolute
public void Absolute()
{
float[] values = new float[] { -1.0f, -2.0f, -3.0f,
-4.0f, -5.0f, -6.0f,
-7.0f, -8.0f, -9.0f };
MatrixF m = new MatrixF(3, 3, values, MatrixOrder.RowMajor);
MatrixF absolute = m.Clone();
absolute.Absolute();
for (int i = 0; i < absolute.NumberOfRows; i++)
for (int j = 0; j < absolute.NumberOfColumns; j++)
Assert.AreEqual(i * absolute.NumberOfColumns + j + 1, absolute[i, j]);
absolute = MatrixF.Absolute(m);
for (int i = 0; i < absolute.NumberOfRows; i++)
for (int j = 0; j < absolute.NumberOfColumns; j++)
Assert.AreEqual(i * absolute.NumberOfColumns + j + 1, absolute[i, j]);
values = new float[] { 1.0f, 2.0f, 3.0f,
4.0f, 5.0f, 6.0f,
7.0f, 8.0f, 9.0f };
m = new MatrixF(3, 3, values, MatrixOrder.RowMajor);
absolute = m.Clone();
absolute.Absolute();
for (int i = 0; i < absolute.NumberOfRows; i++)
for (int j = 0; j < absolute.NumberOfColumns; j++)
Assert.AreEqual(i * absolute.NumberOfColumns + j + 1, absolute[i, j]);
absolute = MatrixF.Absolute(m);
for (int i = 0; i < absolute.NumberOfRows; i++)
for (int j = 0; j < absolute.NumberOfColumns; j++)
Assert.AreEqual(i * absolute.NumberOfColumns + j + 1, absolute[i, j]);
Assert.IsNull(MatrixF.Absolute(null));
}
示例4: SolveLinearEquations
//--------------------------------------------------------------
/// <summary>
/// Returns the least squares solution for the equation <c>A * X = B</c>.
/// </summary>
/// <param name="matrixB">The matrix B with as many rows as A and any number of columns.</param>
/// <returns>X with the least squares solution.</returns>
/// <exception cref="ArgumentNullException">
/// <paramref name="matrixB"/> is <see langword="null"/>.
/// </exception>
/// <exception cref="ArgumentException">
/// The number of rows does not match.
/// </exception>
/// <exception cref="MathematicsException">
/// The matrix A does not have full rank.
/// </exception>
public MatrixF SolveLinearEquations(MatrixF matrixB)
{
if (matrixB == null)
throw new ArgumentNullException("matrixB");
if (matrixB.NumberOfRows != _m)
throw new ArgumentException("The number of rows does not match.", "matrixB");
if (HasNumericallyFullRank == false)
throw new MathematicsException("The matrix does not have full rank.");
// Copy right hand side
MatrixF x = matrixB.Clone();
// Compute Y = transpose(Q)*B
for (int k = 0; k < _n; k++)
{
for (int j = 0; j < matrixB.NumberOfColumns; j++)
{
float s = 0;
for (int i = k; i < _m; i++)
s += _qr[i, k] * x[i, j];
s = -s / _qr[k, k];
for (int i = k; i < _m; i++)
x[i, j] += s * _qr[i, k];
}
}
// Solve R*X = Y.
for (int k = _n - 1; k >= 0; k--)
{
for (int j = 0; j < matrixB.NumberOfColumns; j++)
x[k, j] /= _rDiagonal[k];
for (int i = 0; i < k; i++)
for (int j = 0; j < matrixB.NumberOfColumns; j++)
x[i, j] -= x[k, j] * _qr[i, k];
}
return x.GetSubmatrix(0, _n - 1, 0, matrixB.NumberOfColumns - 1);
}
示例5: SolveLinearEquations
//--------------------------------------------------------------
/// <summary>
/// Solves the equation <c>A * X = B</c>.
/// </summary>
/// <param name="matrixB">The matrix B with as many rows as A and any number of columns.</param>
/// <returns>X, so that <c>A * X = B</c>.</returns>
/// <exception cref="ArgumentNullException">
/// <paramref name="matrixB"/> is <see langword="null"/>.
/// </exception>
/// <exception cref="ArgumentException">
/// The number of rows does not match.
/// </exception>
/// <exception cref="MathematicsException">
/// The matrix A is not symmetric and positive definite.
/// </exception>
public MatrixF SolveLinearEquations(MatrixF matrixB)
{
if (matrixB == null)
throw new ArgumentNullException("matrixB");
if (matrixB.NumberOfRows != L.NumberOfRows)
throw new ArgumentException("The number of rows does not match.", "matrixB");
if (IsSymmetricPositiveDefinite == false)
throw new MathematicsException("The original matrix A is not symmetric and positive definite.");
// Initialize x as a copy of B.
MatrixF x = matrixB.Clone();
// Solve L*Y = B.
for (int k = 0; k < L.NumberOfRows; k++)
{
for (int j = 0; j < matrixB.NumberOfColumns; j++)
{
for (int i = 0; i < k; i++)
x[k, j] -= x[i, j] * L[k, i];
x[k, j] /= L[k, k];
}
}
// Solve transpose(L) * X = Y.
for (int k = L.NumberOfRows - 1; k >= 0; k--)
{
for (int j = 0; j < matrixB.NumberOfColumns; j++)
{
for (int i = k + 1; i < L.NumberOfRows; i++)
x[k, j] -= x[i, j] * L[i, k];
x[k, j] /= L[k, k];
}
}
return x;
}
示例6: Invert
public void Invert()
{
Assert.AreEqual(MatrixF.CreateIdentity(3, 3), MatrixF.CreateIdentity(3, 3).Inverse);
MatrixF m = new MatrixF(new float[,] {{1, 2, 3, 4},
{2, 5, 8, 3},
{7, 6, -1, 1},
{4, 9, 7, 7}});
MatrixF inverse = m.Clone();
m.Invert();
VectorF v = new VectorF(4, 1);
VectorF w = m * v;
Assert.IsTrue(VectorF.AreNumericallyEqual(v, inverse * w));
Assert.IsTrue(MatrixF.AreNumericallyEqual(MatrixF.CreateIdentity(4, 4), m * inverse));
m = new MatrixF(new float[,] {{1, 2, 3},
{2, 5, 8},
{7, 6, -1},
{4, 9, 7}});
// To check the pseudo-inverse we use the definition: A*A.Transposed*A = A
// see http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
inverse = m.Clone();
inverse.Invert();
Assert.IsTrue(MatrixF.AreNumericallyEqual(m, m * inverse * m));
}
示例7: Clone
public void Clone()
{
MatrixF m = new MatrixF(3, 4, rowMajor, MatrixOrder.RowMajor);
var o = m.Clone();
Assert.AreEqual(m, o);
}
示例8: TryInvert
public void TryInvert()
{
// Regular, square
MatrixF m = new MatrixF(new float[,] {{1, 2, 3, 4},
{2, 5, 8, 3},
{7, 6, -1, 1},
{4, 9, 7, 7}});
MatrixF inverse = m.Clone();
Assert.AreEqual(true, m.TryInvert());
Assert.IsTrue(MatrixF.AreNumericallyEqual(MatrixF.CreateIdentity(4, 4), m * inverse));
// Full column rank, rectangular
m = new MatrixF(new float[,] {{1, 2, 3},
{2, 5, 8},
{7, 6, -1},
{4, 9, 7}});
inverse = m.Clone();
Assert.AreEqual(true, m.TryInvert());
Assert.IsTrue(MatrixF.AreNumericallyEqual(m, m * inverse * m));
// singular
m = new MatrixF(new float[,] {{1, 2, 3},
{2, 5, 8},
{3, 7, 11}});
inverse = m.Clone();
Assert.AreEqual(false, m.TryInvert());
}
示例9: SingularValueDecompositionF
public SingularValueDecompositionF(MatrixF matrixA)
{
if (matrixA == null)
throw new ArgumentNullException("matrixA");
// Derived from LINPACK code.
// Initialize.
_m = matrixA.NumberOfRows;
_n = matrixA.NumberOfColumns;
MatrixF matrixAClone = matrixA.Clone();
if (_m < _n)
throw new ArgumentException("The number of rows must be greater than or equal to the number of columns.", "matrixA");
int nu = Math.Min(_m, _n);
_s = new VectorF(Math.Min(_m + 1, _n));
_u = new MatrixF(_m, nu); //Jama getU() returns new Matrix(U,_m,Math.min(_m+1,_n)) ?!
_v = new MatrixF(_n, _n);
float[] e = new float[_n];
float[] work = new float[_m];
// Abort if A contains NaN values.
// If we continue with NaN values, we run into an infinite loop.
for (int i = 0; i < _m; i++)
{
for (int j = 0; j < _n; j++)
{
if (Numeric.IsNaN(matrixA[i, j]))
{
_u.Set(float.NaN);
_v.Set(float.NaN);
_s.Set(float.NaN);
return;
}
}
}
// By default, we calculate U and V. To calculate only U or V we can set one of the following
// two constants to false. (This optimization is not yet tested.)
const bool wantu = true;
const bool wantv = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = Math.Min(_m - 1, _n);
int nrt = Math.Max(0, Math.Min(_n - 2, _m));
for (int k = 0; k < Math.Max(nct, nrt); k++)
{
if (k < nct)
{
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
_s[k] = 0;
for (int i = k; i < _m; i++)
_s[k] = MathHelper.Hypotenuse(_s[k], matrixAClone[i, k]);
if (_s[k] != 0)
{
if (matrixAClone[k, k] < 0)
_s[k] = -_s[k];
for (int i = k; i < _m; i++)
matrixAClone[i, k] /= _s[k];
matrixAClone[k, k] += 1;
}
_s[k] = -_s[k];
}
for (int j = k + 1; j < _n; j++)
{
if ((k < nct) && (_s[k] != 0))
{
// Apply the transformation.
float t = 0;
for (int i = k; i < _m; i++)
t += matrixAClone[i, k] * matrixAClone[i, j];
t = -t / matrixAClone[k, k];
for (int i = k; i < _m; i++)
matrixAClone[i, j] += t * matrixAClone[i, k];
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = matrixAClone[k, j];
}
if (wantu & (k < nct))
{
// Place the transformation in U for subsequent back
// multiplication.
for (int i = k; i < _m; i++)
_u[i, k] = matrixAClone[i, k];
}
if (k < nrt)
//.........这里部分代码省略.........
示例10: LUDecompositionF
//--------------------------------------------------------------
/// <summary>
/// Creates the LU decomposition of the given matrix.
/// </summary>
/// <param name="matrixA">
/// The matrix A. (Can be rectangular. Number of rows ≥ number of columns.)
/// </param>
/// <exception cref="ArgumentNullException">
/// <paramref name="matrixA"/> is <see langword="null"/>.
/// </exception>
/// <exception cref="ArgumentException">
/// The number of rows must be greater than or equal to the number of columns.
/// </exception>
public LUDecompositionF(MatrixF matrixA)
{
if (matrixA == null)
throw new ArgumentNullException("matrixA");
if (matrixA.NumberOfColumns > matrixA.NumberOfRows)
throw new ArgumentException("The number of rows must be greater than or equal to the number of columns.", "matrixA");
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
_lu = matrixA.Clone();
_m = matrixA.NumberOfRows;
_n = matrixA.NumberOfColumns;
_pivotVector = new int[_m];
// Initialize with the 0 to m-1.
for (int i = 0; i < _m; i++)
_pivotVector[i] = i;
_pivotSign = 1;
// Outer loop.
for (int j = 0; j < _n; j++)
{
// Make a copy of the j-th column to localize references.
float[] luColumnJ = new float[_m];
for (int i = 0; i < _m; i++)
luColumnJ[i] = _lu[i, j];
// Apply previous transformations.
for (int i = 0; i < _m; i++)
{
// Most of the time is spent in the following dot product.
int kmax = Math.Min(i, j);
float s = 0;
for (int k = 0; k < kmax; k++)
s += _lu[i, k] * luColumnJ[k];
luColumnJ[i] -= s;
_lu[i, j] = luColumnJ[i];
}
// Find pivot and exchange if necessary.
int p = j;
for (int i = j + 1; i < _m; i++)
if (Math.Abs(luColumnJ[i]) > Math.Abs(luColumnJ[p]))
p = i;
// Swap lines p and k.
if (p != j)
{
for (int k = 0; k < _n; k++)
{
float dummy = _lu[p, k];
_lu[p, k] = _lu[j, k];
_lu[j, k] = dummy;
}
MathHelper.Swap(ref _pivotVector[p], ref _pivotVector[j]);
_pivotSign = -_pivotSign;
}
// Compute multipliers.
if (j < _m && _lu[j, j] != 0)
for (int i = j + 1; i < _m; i++)
_lu[i, j] /= _lu[j, j];
}
}