本文整理汇总了C#中InputArray类的典型用法代码示例。如果您正苦于以下问题:C# InputArray类的具体用法?C# InputArray怎么用?C# InputArray使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
InputArray类属于命名空间,在下文中一共展示了InputArray类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CamShift
/// <summary>
/// Finds an object center, size, and orientation.
/// </summary>
/// <param name="probImage">Back projection of the object histogram. </param>
/// <param name="window">Initial search window.</param>
/// <param name="criteria">Stop criteria for the underlying MeanShift() .</param>
/// <returns></returns>
public static RotatedRect CamShift(
InputArray probImage, ref Rect window, TermCriteria criteria)
{
if (probImage == null)
throw new ArgumentNullException(nameof(probImage));
probImage.ThrowIfDisposed();
RotatedRect result = NativeMethods.video_CamShift(
probImage.CvPtr, ref window, criteria);
return result;
}
示例2: Moments
/// <summary>
/// Calculates all of the moments
/// up to the third order of a polygon or rasterized shape.
/// </summary>
/// <param name="array">A raster image (single-channel, 8-bit or floating-point
/// 2D array) or an array ( 1xN or Nx1 ) of 2D points ( Point or Point2f )</param>
/// <param name="binaryImage">If it is true, then all the non-zero image pixels are treated as 1’s</param>
/// <returns></returns>
public Moments(InputArray array, bool binaryImage = false)
{
if (array == null)
throw new ArgumentNullException(nameof(array));
array.ThrowIfDisposed();
InitializeFromInputArray(array, binaryImage);
}
示例3: SVD
/// <summary>
/// the constructor that performs SVD
/// </summary>
/// <param name="src"></param>
/// <param name="flags"></param>
public SVD(InputArray src, Flags flags = 0)
{
if (src == null)
throw new ArgumentNullException("src");
src.ThrowIfDisposed();
ptr = NativeMethods.core_SVD_new(src.CvPtr, (int)flags);
}
示例4: Moments
/// <summary>
/// computes moments of the rasterized shape or a vector of points
/// </summary>
/// <param name="array"></param>
/// <param name="binaryImage"></param>
public Moments(InputArray array, bool binaryImage = false)
{
if(array == null)
throw new ArgumentNullException("array");
array.ThrowIfDisposed();
WCvMoments m = NativeMethods.imgproc_moments(array.CvPtr, binaryImage ? 1 : 0);
Initialize(m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03);
}
示例5: PCA
/// <summary>
///
/// </summary>
/// <param name="data"></param>
/// <param name="mean"></param>
/// <param name="flags"></param>
/// <param name="retainedVariance"></param>
public PCA(InputArray data, InputArray mean, Flags flags, double retainedVariance)
{
if (data == null)
throw new ArgumentNullException(nameof(data));
if (mean == null)
throw new ArgumentNullException(nameof(mean));
data.ThrowIfDisposed();
mean.ThrowIfDisposed();
ptr = NativeMethods.core_PCA_new3(data.CvPtr, mean.CvPtr, (int)flags, retainedVariance);
}
示例6: MeanShift
/// <summary>
/// Finds an object on a back projection image.
/// </summary>
/// <param name="probImage">Back projection of the object histogram.</param>
/// <param name="window">Initial search window.</param>
/// <param name="criteria">Stop criteria for the iterative search algorithm.</param>
/// <returns>Number of iterations CAMSHIFT took to converge.</returns>
public static int MeanShift(
InputArray probImage, ref Rect window, TermCriteria criteria)
{
if (probImage == null)
throw new ArgumentNullException("probImage");
probImage.ThrowIfDisposed();
int result = NativeMethods.video_meanShift(
probImage.CvPtr, ref window, criteria);
return result;
}
示例7: Index
/// <summary>
/// 与えられたデータセットの最近傍探索インデックスを作成します.
/// </summary>
/// <param name="features">インデックス作成対象となる特徴(点)が格納された, CV_32F 型の行列.この行列のサイズは matrix is num _ features x feature _ dimensionality となります</param>
/// <param name="params">params – インデックスパラメータを含む構造体.作成されるインデックスの種類は,このパラメータの種類に依存します</param>
/// <param name="distType"></param>
#else
/// <summary>
/// Constructs a nearest neighbor search index for a given dataset.
/// </summary>
/// <param name="features">features – Matrix of type CV _ 32F containing the features(points) to index. The size of the matrix is num _ features x feature _ dimensionality.</param>
/// <param name="params">Structure containing the index parameters. The type of index that will be constructed depends on the type of this parameter. </param>
/// <param name="distType"></param>
#endif
public Index(InputArray features, IndexParams @params, FlannDistance distType = FlannDistance.L2)
{
if (features == null)
throw new ArgumentNullException("features");
if (@params == null)
throw new ArgumentNullException("params");
ptr = NativeMethods.flann_Index_new(features.CvPtr, @params.CvPtr, (int)distType);
if (ptr == IntPtr.Zero)
throw new OpenCvSharpException("Failed to create Index");
}
示例8: ApplyColorMap
/// <summary>
///
/// </summary>
/// <param name="src"></param>
/// <param name="dst"></param>
/// <param name="colormap"></param>
public static void ApplyColorMap(InputArray src, OutputArray dst, ColorMapMode colormap)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
NativeMethods.contrib_applyColorMap(src.CvPtr, dst.CvPtr, (int)colormap);
dst.Fix();
}
示例9: FASTX
/// <summary>
/// detects corners using FAST algorithm by E. Rosten
/// </summary>
/// <param name="image"></param>
/// <param name="keypoints"></param>
/// <param name="threshold"></param>
/// <param name="nonmaxSupression"></param>
/// <param name="type"></param>
public static void FASTX(InputArray image, out KeyPoint[] keypoints, int threshold, bool nonmaxSupression, int type)
{
if (image == null)
throw new ArgumentNullException("image");
image.ThrowIfDisposed();
using (var kp = new VectorOfKeyPoint())
{
NativeMethods.features2d_FASTX(image.CvPtr, kp.CvPtr, threshold, nonmaxSupression ? 1 : 0, type);
keypoints = kp.ToArray();
}
}
示例10: MedianBlur
/// <summary>
///
/// </summary>
/// <param name="src"></param>
/// <param name="dst"></param>
/// <param name="ksize"></param>
public static void MedianBlur(InputArray src, OutputArray dst, int ksize)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
NativeMethods.imgproc_medianBlur(src.CvPtr, dst.CvPtr, ksize);
dst.Fix();
}
示例11: FastNlMeansDenoising
/// <summary>
/// Perform image denoising using Non-local Means Denoising algorithm
/// with several computational optimizations. Noise expected to be a gaussian white noise
/// </summary>
/// <param name="src">Input 8-bit 1-channel, 2-channel or 3-channel image.</param>
/// <param name="dst">Output image with the same size and type as src .</param>
/// <param name="h">
/// Parameter regulating filter strength. Big h value perfectly removes noise but also removes image details,
/// smaller h value preserves details but also preserves some noise</param>
/// <param name="templateWindowSize">
/// Size in pixels of the template patch that is used to compute weights. Should be odd. Recommended value 7 pixels</param>
/// <param name="searchWindowSize">
/// Size in pixels of the window that is used to compute weighted average for given pixel.
/// Should be odd. Affect performance linearly: greater searchWindowsSize - greater denoising time. Recommended value 21 pixels</param>
public static void FastNlMeansDenoising(InputArray src, OutputArray dst, float h = 3,
int templateWindowSize = 7, int searchWindowSize = 21)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
NativeMethods.photo_fastNlMeansDenoising(src.CvPtr, dst.CvPtr, h, templateWindowSize, searchWindowSize);
dst.Fix();
}
示例12: CopyMakeBorder
/// <summary>
/// Forms a border around the image
/// </summary>
/// <param name="src">The source image</param>
/// <param name="dst">The destination image; will have the same type as src and
/// the size Size(src.cols+left+right, src.rows+top+bottom)</param>
/// <param name="top">Specify how much pixels in each direction from the source image rectangle one needs to extrapolate</param>
/// <param name="bottom">Specify how much pixels in each direction from the source image rectangle one needs to extrapolate</param>
/// <param name="left">Specify how much pixels in each direction from the source image rectangle one needs to extrapolate</param>
/// <param name="right">Specify how much pixels in each direction from the source image rectangle one needs to extrapolate</param>
/// <param name="borderType">The border type</param>
/// <param name="value">The border value if borderType == Constant</param>
public static void CopyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, BorderType borderType, Scalar? value = null)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
Scalar value0 = value.GetValueOrDefault(new Scalar());
NativeMethods.imgproc_copyMakeBorder(src.CvPtr, dst.CvPtr, top, bottom, left, right, (int)borderType, value0);
dst.Fix();
}
示例13: FAST
/// <summary>
/// Detects corners using the FAST algorithm
/// </summary>
/// <param name="image">grayscale image where keypoints (corners) are detected.</param>
/// <param name="threshold">threshold on difference between intensity of the central pixel
/// and pixels of a circle around this pixel.</param>
/// <param name="nonmaxSupression">if true, non-maximum suppression is applied to
/// detected corners (keypoints).</param>
/// <param name="type">one of the three neighborhoods as defined in the paper</param>
/// <returns>keypoints detected on the image.</returns>
public static KeyPoint[] FAST(InputArray image, int threshold, bool nonmaxSupression, FASTType type)
{
if (image == null)
throw new ArgumentNullException(nameof(image));
image.ThrowIfDisposed();
using (var kp = new VectorOfKeyPoint())
{
NativeMethods.features2d_FAST2(image.CvPtr, kp.CvPtr, threshold, nonmaxSupression ? 1 : 0, (int)type);
GC.KeepAlive(image);
return kp.ToArray();
}
}
示例14: Rodrigues
/// <summary>
/// converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
/// </summary>
/// <param name="src">Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).</param>
/// <param name="dst">Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.</param>
/// <param name="jacobian">Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial derivatives of the output array components with respect to the input array components.</param>
public static void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian = null)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
src.ThrowIfDisposed();
dst.ThrowIfNotReady();
NativeMethods.calib3d_Rodrigues(src.CvPtr, dst.CvPtr, ToPtr(jacobian));
dst.Fix();
if (jacobian != null)
jacobian.Fix();
}
示例15: AGAST
/// <summary>
/// Detects corners using the AGAST algorithm
/// </summary>
/// <param name="image">grayscale image where keypoints (corners) are detected.</param>
/// <param name="threshold">threshold on difference between intensity of the central pixel
/// and pixels of a circle around this pixel.</param>
/// <param name="nonmaxSuppression">if true, non-maximum suppression is applied to
/// detected corners (keypoints).</param>
/// <param name="type">one of the four neighborhoods as defined in the paper</param>
/// <returns>keypoints detected on the image.</returns>
public static KeyPoint[] AGAST(InputArray image, int threshold, bool nonmaxSuppression, AGASTType type)
{
if (image == null)
throw new ArgumentNullException("image");
image.ThrowIfDisposed();
using (var vector = new VectorOfKeyPoint())
{
NativeMethods.features2d_AGAST(image.CvPtr, vector.CvPtr, threshold, nonmaxSuppression ? 1 : 0,
(int) type);
GC.KeepAlive(image);
return vector.ToArray();
}
}