当前位置: 首页>>代码示例>>C#>>正文


C# Index.Pos方法代码示例

本文整理汇总了C#中Index.Pos方法的典型用法代码示例。如果您正苦于以下问题:C# Index.Pos方法的具体用法?C# Index.Pos怎么用?C# Index.Pos使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Index的用法示例。


在下文中一共展示了Index.Pos方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: CalculateError

        /// <summary>
        /// Total error calculation
        /// </summary>
        /// <param name="info">NetworkInfo</param>
        /// <param name="inp">ref Input - input data patterns</param>
        /// <param name="dout">ref Output - output data</param>
        /// <param name="topo">ref Topography - topo is network topology in the form of one vector</param>
        /// <param name="ww">ref Weights  weights</param>
        /// <param name="act">ref Activation - type of activation function</param>
        /// <param name="gain">ref Gain - strengthening the activation function</param>
        /// <param name="iw">ref WeightsPointers - index pointers used for network topology stored in top in the form of one vector</param>
        /// <remarks>Network error will be overriden so please save it</remarks>
        public double CalculateError(ref NetworkInfo info, ref Input inp, ref Output dout, ref Topography topo, 
            Weights ww, ref Activation act, ref Gain gain, ref Index iw)
        {
            try
            {
                Error = 0;
                for (p = 0; p < info.np; p++)
                {
                    node.Clear();
                    node.AddRange(inp.Data[p]);

                    for (n = 0; n < info.nn; n++)
                    {
                        net = ww[iw.Pos(n)];

                        int from = iw.Pos(n) + 1;
                        int to = iw.Pos(n + 1) - 1;

                        for (i = from; i <= to; i++)
                        {
                            net += node[(int)topo[i]] * ww[i];
                        }

                        node.Add(ActivationFunction.computeFunction(ref n, ref net, ref act, ref gain));

                    }

                    for (k = 0; k < info.no; k++)
                    {
                        Error += System.Math.Pow((dout.Data[p][k] - node[info.nio + k]), 2);
                    }
                }

                return Error;
            }
            catch (System.Exception ex)
            {
                throw new NeuralNetworkError("Błąd uaktualnienia błędu sieci neuronowej. " + ex.Message, ex);
            }
        }
开发者ID:DrZeil,项目名称:nbn-csharp,代码行数:52,代码来源:NetworkError.cs

示例2: Compute

        /// <summary>
        /// Compute psudo hessian matrix and its gradient
        /// </summary>
        /// <param name="info">NetworkInfo - information about neural network</param>
        /// <param name="inp">Input - input data patterns used for learn</param>
        /// <param name="dout">Output - output data patterns used for learn</param>
        /// <param name="topo">Topography - neural network topography</param>
        /// <param name="ww">Weights - weights</param>
        /// <param name="act">Activation - activation function selection</param>
        /// <param name="gain">Gain - neuron gain</param>
        /// <param name="iw">Index - topography indexes</param>
        public void Compute(ref NetworkInfo info, ref Input inp, ref Output dout, ref Topography topo,
            Weights ww, ref Activation act, ref Gain gain, ref Index iw)
        {
            GradientMat = MatrixMB.Zeros(info.nw, 1);
            HessianMat = MatrixMB.Zeros(info.nw, info.nw);
            np = info.np;//number of patterns
            ni = info.ni;//number of inputs
            no = info.no;//number of outputs
            nw = info.nw;//number of weights
            nn = info.nn;//number of neurons
            nio = nn + ni - no;
            zeros = ni.Zeros();
            delo = MatrixMB.Zeros(1, nio + 1);
            J = MatrixMB.Zeros(1, nw);

            for (p = 0; p < np; p++)
            {
                node.Clear();
                node.AddRange(inp.Data[p]);

                CalculateFunctionValuesAndDerivates(ref ww, ref iw, ref topo, ref act, ref gain);

                for (k = 0; k < no; k++)
                {
                    o = nio + k;
                    error = dout.Data[p][k] - node[o];
                    J.ClearWithZeros();
                    s = iw.Pos(o - ni);
                    J.Data[0][s] = -derivates[o];
                    delo.ClearWithZeros();

                    CalculateJacobian(ref ww, ref iw, ref topo);

                    CalculateForHiddenLayer(ref iw, ref topo, ref ww);

                    if (dout[p, 0] > 0.5) J = J * ratio;
                    var JT = J.Transposed;
                    GradientMat = GradientMat + JT * error;
                    HessianMat = HessianMat + JT * J;
                }
            }
        }
开发者ID:DrZeil,项目名称:nbn-csharp,代码行数:53,代码来源:Hessian.cs


注:本文中的Index.Pos方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。