本文整理汇总了C#中ISymbolicExpressionTree类的典型用法代码示例。如果您正苦于以下问题:C# ISymbolicExpressionTree类的具体用法?C# ISymbolicExpressionTree怎么用?C# ISymbolicExpressionTree使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
ISymbolicExpressionTree类属于命名空间,在下文中一共展示了ISymbolicExpressionTree类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CalculateImpactAndReplacementValues
protected override Dictionary<ISymbolicExpressionTreeNode, Tuple<double, double>> CalculateImpactAndReplacementValues(ISymbolicExpressionTree tree) {
var interpreter = Content.Model.Interpreter;
var rows = Content.ProblemData.TrainingIndices;
var dataset = Content.ProblemData.Dataset;
var targetVariable = Content.ProblemData.TargetVariable;
var targetValues = dataset.GetDoubleValues(targetVariable, rows);
var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows).ToArray();
var impactAndReplacementValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, double>>();
List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
OnlineCalculatorError errorState;
double originalR = OnlinePearsonsRCalculator.Calculate(targetValues, originalOutput, out errorState);
if (errorState != OnlineCalculatorError.None) originalR = 0.0;
foreach (ISymbolicExpressionTreeNode node in nodes) {
var parent = node.Parent;
constantNode.Value = CalculateReplacementValue(node, tree);
ISymbolicExpressionTreeNode replacementNode = constantNode;
SwitchNode(parent, node, replacementNode);
var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows);
double newR = OnlinePearsonsRCalculator.Calculate(targetValues, newOutput, out errorState);
if (errorState != OnlineCalculatorError.None) newR = 0.0;
// impact = 0 if no change
// impact < 0 if new solution is better
// impact > 0 if new solution is worse
double impact = (originalR * originalR) - (newR * newR);
impactAndReplacementValues[node] = new Tuple<double, double>(impact, constantNode.Value);
SwitchNode(parent, replacementNode, node);
}
return impactAndReplacementValues;
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:32,代码来源:InteractiveSymbolicTimeSeriesPrognosisSolutionSimplifierView.cs
示例2: Prune
public static ISymbolicExpressionTree Prune(ISymbolicExpressionTree tree, SymbolicRegressionSolutionImpactValuesCalculator impactValuesCalculator, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IRegressionProblemData problemData, DoubleLimit estimationLimits, IEnumerable<int> rows, double nodeImpactThreshold = 0.0, bool pruneOnlyZeroImpactNodes = false) {
var clonedTree = (ISymbolicExpressionTree)tree.Clone();
var model = new SymbolicRegressionModel(problemData.TargetVariable, clonedTree, interpreter, estimationLimits.Lower, estimationLimits.Upper);
var nodes = clonedTree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList(); // skip the nodes corresponding to the ProgramRootSymbol and the StartSymbol
double qualityForImpactsCalculation = double.NaN; // pass a NaN value initially so the impact calculator will calculate the quality
for (int i = 0; i < nodes.Count; ++i) {
var node = nodes[i];
if (node is ConstantTreeNode) continue;
double impactValue, replacementValue;
double newQualityForImpactsCalculation;
impactValuesCalculator.CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation);
if (pruneOnlyZeroImpactNodes && !impactValue.IsAlmost(0.0)) continue;
if (!pruneOnlyZeroImpactNodes && impactValue > nodeImpactThreshold) continue;
var constantNode = (ConstantTreeNode)node.Grammar.GetSymbol("Constant").CreateTreeNode();
constantNode.Value = replacementValue;
ReplaceWithConstant(node, constantNode);
i += node.GetLength() - 1; // skip subtrees under the node that was folded
qualityForImpactsCalculation = newQualityForImpactsCalculation;
}
return model.SymbolicExpressionTree;
}
示例3: CreateModel
protected override ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, DoubleLimit estimationLimits) {
var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(tree, interpreter, estimationLimits.Lower, estimationLimits.Upper);
var classificationProblemData = (IClassificationProblemData)problemData;
var rows = classificationProblemData.TrainingIndices;
model.RecalculateModelParameters(classificationProblemData, rows);
return model;
}
示例4: Manipulate
protected override void Manipulate(IRandom random, ISymbolicExpressionTree tree) {
tree.Root.ForEachNodePostfix(node => {
if (node.HasLocalParameters) {
node.ShakeLocalParameters(random, ShakingFactor);
}
});
}
示例5: Solution
public Solution(ISymbolicExpressionTree tree, string path, int nrOfRounds, EnemyCollection enemies)
: base() {
this.Tree = tree;
this.Path = path;
this.NrOfRounds = nrOfRounds;
this.Enemies = enemies;
}
示例6: Compile
public static Instruction[] Compile(ISymbolicExpressionTree tree, Func<ISymbolicExpressionTreeNode, byte> opCodeMapper, IEnumerable<Func<Instruction, Instruction>> postInstructionCompiledHooks) {
Dictionary<string, ushort> entryPoint = new Dictionary<string, ushort>();
List<Instruction> code = new List<Instruction>();
// compile main body branches
foreach (var branch in tree.Root.GetSubtree(0).Subtrees) {
code.AddRange(Compile(branch, opCodeMapper, postInstructionCompiledHooks));
}
// compile function branches
var functionBranches = from node in tree.IterateNodesPrefix()
where node.Symbol is Defun
select node;
foreach (DefunTreeNode branch in functionBranches) {
if (code.Count > ushort.MaxValue) throw new ArgumentException("Code for the tree is too long (> ushort.MaxValue).");
entryPoint[branch.FunctionName] = (ushort)code.Count;
code.AddRange(Compile(branch.GetSubtree(0), opCodeMapper, postInstructionCompiledHooks));
}
// address of all functions is fixed now
// iterate through code again and fill in the jump locations
for (int i = 0; i < code.Count; i++) {
Instruction instr = code[i];
if (instr.dynamicNode.Symbol is InvokeFunction) {
var invokeNode = (InvokeFunctionTreeNode)instr.dynamicNode;
instr.data = entryPoint[invokeNode.Symbol.FunctionName];
}
}
return code.ToArray();
}
示例7: Calculate
public static double Calculate(ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows, IntRange evaluationPartition, int horizon, bool applyLinearScaling) {
var horizions = rows.Select(r => Math.Min(horizon, evaluationPartition.End - r));
IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows.Zip(horizions, Enumerable.Range).SelectMany(r => r));
IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows, horizions).SelectMany(x => x);
OnlineCalculatorError errorState;
double mse;
if (applyLinearScaling && horizon == 1) { //perform normal evaluation and afterwards scale the solution and calculate the fitness value
var mseCalculator = new OnlineMeanSquaredErrorCalculator();
CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, mseCalculator, problemData.Dataset.Rows * horizon);
errorState = mseCalculator.ErrorState;
mse = mseCalculator.MeanSquaredError;
} else if (applyLinearScaling) { //first create model to perform linear scaling and afterwards calculate fitness for the scaled model
var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)solution.Clone(), interpreter, lowerEstimationLimit, upperEstimationLimit);
model.Scale(problemData);
var scaledSolution = model.SymbolicExpressionTree;
estimatedValues = interpreter.GetSymbolicExpressionTreeValues(scaledSolution, problemData.Dataset, rows, horizions).SelectMany(x => x);
var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
} else {
var boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
mse = OnlineMeanSquaredErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
}
if (errorState != OnlineCalculatorError.None) return Double.NaN;
else return mse;
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:27,代码来源:SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator.cs
示例8: SymbolicDiscriminantFunctionClassificationModel
public SymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDiscriminantFunctionThresholdCalculator thresholdCalculator,
double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
: base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
this.thresholds = new double[0];
this.classValues = new double[0];
this.ThresholdCalculator = thresholdCalculator;
}
示例9: DeleteSubroutine
public static bool DeleteSubroutine(
IRandom random,
ISymbolicExpressionTree symbolicExpressionTree,
int maxFunctionDefinitions, int maxFunctionArguments) {
var functionDefiningBranches = symbolicExpressionTree.IterateNodesPrefix().OfType<DefunTreeNode>().ToList();
if (!functionDefiningBranches.Any())
// no ADF to delete => abort
return false;
var selectedDefunBranch = functionDefiningBranches.SampleRandom(random);
// remove the selected defun
int defunSubtreeIndex = symbolicExpressionTree.Root.IndexOfSubtree(selectedDefunBranch);
symbolicExpressionTree.Root.RemoveSubtree(defunSubtreeIndex);
// remove references to deleted function
foreach (var subtree in symbolicExpressionTree.Root.Subtrees.OfType<SymbolicExpressionTreeTopLevelNode>()) {
var matchingInvokeSymbol = (from symb in subtree.Grammar.Symbols.OfType<InvokeFunction>()
where symb.FunctionName == selectedDefunBranch.FunctionName
select symb).SingleOrDefault();
if (matchingInvokeSymbol != null) {
subtree.Grammar.RemoveSymbol(matchingInvokeSymbol);
}
}
DeletionByRandomRegeneration(random, symbolicExpressionTree, selectedDefunBranch);
return true;
}
示例10: Solution
public Solution(ISymbolicExpressionTree tree, int length, int width, double quality)
: base("Solution", "A lawn mower solution.") {
this.Tree = tree;
this.Length = length;
this.Width = width;
this.Quality = quality;
}
示例11: RemoveRandomBranch
public static void RemoveRandomBranch(IRandom random, ISymbolicExpressionTree symbolicExpressionTree, int maxTreeLength, int maxTreeDepth) {
var allowedSymbols = new List<ISymbol>();
ISymbolicExpressionTreeNode parent;
int childIndex;
int maxLength;
int maxDepth;
// repeat until a fitting parent and child are found (MAX_TRIES times)
int tries = 0;
var nodes = symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1).Where(n => n.SubtreeCount > 0).ToList();
do {
parent = nodes.SampleRandom(random);
childIndex = random.Next(parent.SubtreeCount);
var child = parent.GetSubtree(childIndex);
maxLength = maxTreeLength - symbolicExpressionTree.Length + child.GetLength();
maxDepth = maxTreeDepth - symbolicExpressionTree.Root.GetBranchLevel(child);
allowedSymbols.Clear();
foreach (var symbol in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex)) {
// check basic properties that the new symbol must have
if ((symbol.Name != child.Symbol.Name || symbol.MinimumArity > 0) &&
symbol.InitialFrequency > 0 &&
parent.Grammar.GetMinimumExpressionDepth(symbol) <= maxDepth &&
parent.Grammar.GetMinimumExpressionLength(symbol) <= maxLength) {
allowedSymbols.Add(symbol);
}
}
tries++;
} while (tries < MAX_TRIES && allowedSymbols.Count == 0);
if (tries >= MAX_TRIES) return;
ReplaceWithMinimalTree(random, symbolicExpressionTree.Root, parent, childIndex);
}
示例12: Interpreter
public Interpreter(ISymbolicExpressionTree tree, BoolMatrix world, int maxTimeSteps) {
this.Expression = tree;
this.MaxTimeSteps = maxTimeSteps;
// create a clone of the world because the ant will remove the food items it can find.
World = (BoolMatrix)world.Clone();
CountFoodItems();
}
示例13: CalculateSimilarity
public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
if (t1 == t2)
return 1;
var map = ComputeBottomUpMapping(t1.Root, t2.Root);
return 2.0 * map.Count / (t1.Length + t2.Length);
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:7,代码来源:SymbolicExpressionTreeBottomUpSimilarityCalculator.cs
示例14: Format
public string Format(ISymbolicExpressionTree symbolicExpressionTree) {
int nodeCounter = 1;
StringBuilder strBuilder = new StringBuilder();
strBuilder.AppendLine("graph {");
strBuilder.AppendLine(FormatRecursively(symbolicExpressionTree.Root, 0, ref nodeCounter));
strBuilder.AppendLine("}");
return strBuilder.ToString();
}
示例15: Calculate
public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, IProblemData problemData, IEnumerable<int> rows) {
IEnumerable<double> signals = GetSignals(interpreter, solution, problemData.Dataset, rows);
IEnumerable<double> returns = problemData.Dataset.GetDoubleValues(problemData.PriceChangeVariable, rows);
OnlineCalculatorError errorState;
double sharpRatio = OnlineSharpeRatioCalculator.Calculate(returns, signals, problemData.TransactionCosts, out errorState);
if (errorState != OnlineCalculatorError.None) return 0.0;
else return sharpRatio;
}