本文整理汇总了C#中IPreConditioner类的典型用法代码示例。如果您正苦于以下问题:C# IPreConditioner类的具体用法?C# IPreConditioner怎么用?C# IPreConditioner使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
IPreConditioner类属于命名空间,在下文中一共展示了IPreConditioner类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected override void CheckResult(IPreConditioner preconditioner, SparseMatrix matrix, Vector vector, Vector result)
{
Assert.AreEqual(typeof(UnitPreconditioner), preconditioner.GetType(), "#01");
// Unit preconditioner is doing nothing. Vector and result should be equal
for (var i = 0; i < vector.Count; i++)
{
Assert.IsTrue(vector[i] == result[i], "#02-" + i);
}
}
示例2: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected override void CheckResult(IPreConditioner preconditioner, SparseMatrix matrix, Vector vector, Vector result)
{
Assert.AreEqual(typeof(Diagonal), preconditioner.GetType(), "#01");
// Compute M * result = product
// compare vector and product. Should be equal
Vector product = new DenseVector(result.Count);
matrix.Multiply(result, product);
for (var i = 0; i < product.Count; i++)
{
Assert.IsTrue(vector[i].AlmostEqual(product[i], -Epsilon.Magnitude()), "#02-" + i);
}
}
示例3: SetPreconditioner
/// <summary>
/// Sets the <see cref="IPreConditioner"/> that will be used to precondition the iterative process.
/// </summary>
/// <param name="preconditioner">The preconditioner.</param>
public void SetPreconditioner(IPreConditioner preconditioner)
{
_preconditioner = preconditioner;
}
示例4: BiCgStab
/// <summary>
/// Initializes a new instance of the <see cref="BiCgStab"/> class.
/// </summary>
/// <remarks>
/// <para>
/// The main advantages of using a user defined <see cref="IIterator"/> are:
/// <list type="number">
/// <item>It is possible to set the desired convergence limits.</item>
/// <item>
/// It is possible to check the reason for which the solver finished
/// the iterative procedure by calling the <see cref="IIterator.Status"/> property.
/// </item>
/// </list>
/// </para>
/// </remarks>
/// <param name="preconditioner">The <see cref="IPreConditioner"/> that will be used to precondition the matrix equation. </param>
/// <param name="iterator">The <see cref="IIterator"/> that will be used to monitor the iterative process. </param>
public BiCgStab(IPreConditioner preconditioner, IIterator iterator)
{
_iterator = iterator;
_preconditioner = preconditioner;
}
示例5: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected abstract void CheckResult(IPreConditioner preconditioner, SparseMatrix matrix, Vector vector, Vector result);
示例6: GpBiCg
/// <summary>
/// Initializes a new instance of the <see cref="GpBiCg"/> class.
/// </summary>
/// <remarks>
/// When using this constructor the solver will use the <see cref="IIterator"/> with
/// the standard settings.
/// </remarks>
/// <param name="preconditioner">The <see cref="IPreConditioner"/> that will be used to precondition the matrix equation.</param>
public GpBiCg(IPreConditioner preconditioner)
: this(preconditioner, null)
{
}
示例7: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected abstract void CheckResult(IPreConditioner<float> preconditioner, SparseMatrix matrix, Vector<float> vector, Vector<float> result);
示例8: TFQMR
/// <summary>
/// Initializes a new instance of the <see cref="TFQMR"/> class.
/// </summary>
/// <remarks>
/// <para>
/// The main advantages of using a user defined <see cref="IIterator"/> are:
/// <list type="number">
/// <item>It is possible to set the desired convergence limits.</item>
/// <item>
/// It is possible to check the reason for which the solver finished
/// the iterative procedure by calling the <see cref="IIterator.Status"/> property.
/// </item>
/// </list>
/// </para>
/// </remarks>
/// <param name="preconditioner">The <see cref="IPreConditioner"/> that will be used to precondition the matrix equation.</param>
/// <param name="iterator">The <see cref="IIterator"/> that will be used to monitor the iterative process.</param>
public TFQMR(IPreConditioner preconditioner, IIterator iterator)
{
_iterator = iterator;
_preconditioner = preconditioner;
}
示例9: CheckResult
protected abstract void CheckResult(IPreConditioner<Complex32> preconditioner, SparseMatrix matrix, Vector<Complex32> vector, Vector<Complex32> result);
示例10: Solve
/// <summary>
/// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
/// solution vector and x is the unknown vector.
/// </summary>
/// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
/// <param name="input">The solution <see cref="Vector"/>, <c>b</c>.</param>
/// <param name="result">The result <see cref="Vector"/>, <c>x</c>.</param>
public void Solve(Matrix matrix, Vector input, Vector result)
{
// If we were stopped before, we are no longer
// We're doing this at the start of the method to ensure
// that we can use these fields immediately.
_hasBeenStopped = false;
// Parameters checks
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.Count != input.Count)
{
throw new ArgumentException(Resources.ArgumentVectorsSameLength);
}
if (input.Count != matrix.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, result);
}
// Initialize the solver fields
// Set the convergence monitor
if (_iterator == null)
{
_iterator = Iterator.CreateDefault();
}
if (_preconditioner == null)
{
_preconditioner = new UnitPreconditioner();
}
_preconditioner.Initialize(matrix);
// Compute r_0 = b - Ax_0 for some initial guess x_0
// In this case we take x_0 = vector
// This is basically a SAXPY so it could be made a lot faster
Vector residuals = new DenseVector(matrix.RowCount);
CalculateTrueResidual(matrix, residuals, result, input);
// Choose r~ (for example, r~ = r_0)
var tempResiduals = residuals.Clone();
// create seven temporary vectors needed to hold temporary
// coefficients. All vectors are mangled in each iteration.
// These are defined here to prevent stressing the garbage collector
Vector vecP = new DenseVector(residuals.Count);
Vector vecPdash = new DenseVector(residuals.Count);
Vector nu = new DenseVector(residuals.Count);
Vector vecS = new DenseVector(residuals.Count);
Vector vecSdash = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
// create some temporary double variables that are needed
// to hold values in between iterations
Complex currentRho = 0;
Complex alpha = 0;
Complex omega = 0;
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, result, input, residuals))
{
// rho_(i-1) = r~^T r_(i-1) // dotproduct r~ and r_(i-1)
var oldRho = currentRho;
currentRho = tempResiduals.DotProduct(residuals);
// if (rho_(i-1) == 0) // METHOD FAILS
// If rho is only 1 ULP from zero then we fail.
if (currentRho.Real.AlmostEqual(0, 1) && currentRho.Imaginary.AlmostEqual(0, 1))
{
// Rho-type breakdown
throw new Exception("Iterative solver experience a numerical break down");
}
//.........这里部分代码省略.........
示例11: Solve
/// <summary>
/// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
/// solution vector and x is the unknown vector.
/// </summary>
/// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
/// <param name="input">The solution vector, <c>b</c></param>
/// <param name="result">The result vector, <c>x</c></param>
public void Solve(Matrix matrix, Vector input, Vector result)
{
// If we were stopped before, we are no longer
// We're doing this at the start of the method to ensure
// that we can use these fields immediately.
_hasBeenStopped = false;
// Error checks
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.Count != input.Count)
{
throw new ArgumentException(Resources.ArgumentVectorsSameLength);
}
if (input.Count != matrix.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
}
// Initialize the solver fields
// Set the convergence monitor
if (_iterator == null)
{
_iterator = Iterator.CreateDefault();
}
if (_preconditioner == null)
{
_preconditioner = new UnitPreconditioner();
}
_preconditioner.Initialize(matrix);
// x_0 is initial guess
// Take x_0 = 0
Vector xtemp = new DenseVector(input.Count);
// r_0 = b - Ax_0
// This is basically a SAXPY so it could be made a lot faster
Vector residuals = new DenseVector(matrix.RowCount);
CalculateTrueResidual(matrix, residuals, xtemp, input);
// Define the temporary scalars
float beta = 0;
float sigma;
// Define the temporary vectors
// rDash_0 = r_0
Vector rdash = new DenseVector(residuals);
// t_-1 = 0
Vector t = new DenseVector(residuals.Count);
Vector t0 = new DenseVector(residuals.Count);
// w_-1 = 0
Vector w = new DenseVector(residuals.Count);
// Define the remaining temporary vectors
Vector c = new DenseVector(residuals.Count);
Vector p = new DenseVector(residuals.Count);
Vector s = new DenseVector(residuals.Count);
Vector u = new DenseVector(residuals.Count);
Vector y = new DenseVector(residuals.Count);
Vector z = new DenseVector(residuals.Count);
Vector temp = new DenseVector(residuals.Count);
Vector temp2 = new DenseVector(residuals.Count);
Vector temp3 = new DenseVector(residuals.Count);
// for (k = 0, 1, .... )
var iterationNumber = 0;
while (ShouldContinue(iterationNumber, xtemp, input, residuals))
{
// p_k = r_k + beta_(k-1) * (p_(k-1) - u_(k-1))
//.........这里部分代码省略.........
示例12: Solve
/// <summary>
/// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
/// solution vector and x is the unknown vector.
/// </summary>
/// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
/// <param name="input">The solution vector, <c>b</c></param>
/// <param name="result">The result vector, <c>x</c></param>
public void Solve(Matrix matrix, Vector input, Vector result)
{
// If we were stopped before, we are no longer
// We're doing this at the start of the method to ensure
// that we can use these fields immediately.
_hasBeenStopped = false;
// Error checks
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.Count != input.Count)
{
throw new ArgumentException(Resources.ArgumentVectorsSameLength);
}
if (input.Count != matrix.RowCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(input, matrix);
}
// Initialize the solver fields
// Set the convergence monitor
if (_iterator == null)
{
_iterator = Iterator.CreateDefault();
}
if (_preconditioner == null)
{
_preconditioner = new UnitPreconditioner();
}
_preconditioner.Initialize(matrix);
var d = new DenseVector(input.Count);
var r = new DenseVector(input);
var uodd = new DenseVector(input.Count);
var ueven = new DenseVector(input.Count);
var v = new DenseVector(input.Count);
var pseudoResiduals = new DenseVector(input);
var x = new DenseVector(input.Count);
var yodd = new DenseVector(input.Count);
var yeven = new DenseVector(input);
// Temp vectors
var temp = new DenseVector(input.Count);
var temp1 = new DenseVector(input.Count);
var temp2 = new DenseVector(input.Count);
// Initialize
var startNorm = input.Norm(2);
// Define the scalars
double alpha = 0;
double eta = 0;
double theta = 0;
var tau = startNorm;
var rho = tau * tau;
// Calculate the initial values for v
// M temp = yEven
_preconditioner.Approximate(yeven, temp);
// v = A temp
matrix.Multiply(temp, v);
// Set uOdd
v.CopyTo(ueven);
// Start the iteration
var iterationNumber = 0;
//.........这里部分代码省略.........
示例13: Solve
/// <summary>
/// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
/// solution vector and x is the unknown vector.
/// </summary>
/// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
/// <param name="input">The solution vector, <c>b</c></param>
/// <param name="result">The result vector, <c>x</c></param>
public void Solve(Matrix matrix, Vector input, Vector result)
{
// If we were stopped before, we are no longer
// We're doing this at the start of the method to ensure
// that we can use these fields immediately.
_hasBeenStopped = false;
// Error checks
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare, "matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.Count != input.Count)
{
throw new ArgumentException(Resources.ArgumentVectorsSameLength);
}
if (input.Count != matrix.RowCount)
{
throw new ArgumentException(Resources.ArgumentMatrixDimensions);
}
// Initialize the solver fields
// Set the convergence monitor
if (_iterator == null)
{
_iterator = Iterator.CreateDefault();
}
if (_preconditioner == null)
{
_preconditioner = new UnitPreconditioner();
}
_preconditioner.Initialize(matrix);
// Choose an initial guess x_0
// Take x_0 = 0
Vector xtemp = new DenseVector(input.Count);
// Choose k vectors q_1, q_2, ..., q_k
// Build a new set if:
// a) the stored set doesn't exist (i.e. == null)
// b) Is of an incorrect length (i.e. too long)
// c) The vectors are of an incorrect length (i.e. too long or too short)
var useOld = false;
if (_startingVectors != null)
{
// We don't accept collections with zero starting vectors so ...
if (_startingVectors.Count <= NumberOfStartingVectorsToCreate(_numberOfStartingVectors, input.Count))
{
// Only check the first vector for sizing. If that matches we assume the
// other vectors match too. If they don't the process will crash
if (_startingVectors[0].Count == input.Count)
{
useOld = true;
}
}
}
_startingVectors = useOld ? _startingVectors : CreateStartingVectors(_numberOfStartingVectors, input.Count);
// Store the number of starting vectors. Not really necessary but easier to type :)
var k = _startingVectors.Count;
// r_0 = b - Ax_0
// This is basically a SAXPY so it could be made a lot faster
Vector residuals = new DenseVector(matrix.RowCount);
CalculateTrueResidual(matrix, residuals, xtemp, input);
// Define the temporary values
var c = new Complex[k];
// Define the temporary vectors
Vector gtemp = new DenseVector(residuals.Count);
Vector u = new DenseVector(residuals.Count);
//.........这里部分代码省略.........