本文整理汇总了C#中IPosition.GetCoordinate方法的典型用法代码示例。如果您正苦于以下问题:C# IPosition.GetCoordinate方法的具体用法?C# IPosition.GetCoordinate怎么用?C# IPosition.GetCoordinate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类IPosition
的用法示例。
在下文中一共展示了IPosition.GetCoordinate方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: WithinRadiusOf
public static SpatialCriteria WithinRadiusOf(this SpatialCriteriaFactory @this,
double radius,
IPosition position)
{
var coordinate = position.GetCoordinate();
return @this.WithinRadiusOf(radius, coordinate.Longitude, coordinate.Latitude);
}
示例2: WriteCoordinate
private double[] WriteCoordinate(IPosition position)
{
var coordinate = position.GetCoordinate();
var pointZM = coordinate as CoordinateZM;
if (pointZM != null)
return new[] { pointZM.Longitude, pointZM.Latitude, pointZM.Elevation, pointZM.Measure };
var pointZ = coordinate as CoordinateZ;
if (pointZ != null)
return new[] { pointZ.Longitude, pointZ.Latitude, pointZ.Elevation };
//CoordinateM is not supported by GeoJSON
return new[] { coordinate.Longitude, coordinate.Latitude };
}
示例3: CalculateLoxodromicLine
public GeodeticLine CalculateLoxodromicLine(IPosition position1, IPosition position2)
{
var point1 = position1.GetCoordinate();
var point2 = position2.GetCoordinate();
var lat1 = point1.Latitude;
var lon1 = point1.Longitude;
var lat2 = point2.Latitude;
var lon2 = point2.Longitude;
if (Math.Abs(lat1 - lat2) < double.Epsilon && Math.Abs(lon1 - lon2) < double.Epsilon)
return null;
double distance;
var latDeltaRad = (lat2 - lat1).ToRadians();
var meridionalDistance = CalculateMeridionalDistance(lat2) - CalculateMeridionalDistance(lat1);
var course = LoxodromicLineCourse(lat1, lon1, lat2, lon2);
if (Math.Abs(latDeltaRad) < 0.0008)
{
// near parallel sailing
var lonDelta = lon2 - lon1;
if (lonDelta > 180)
lonDelta = lonDelta - 360;
if (lonDelta < -180)
lonDelta = lonDelta + 360;
var lonDeltaRad = lonDelta.ToRadians();
var midLatRad = (0.5 * (lat1 + lat2)).ToRadians();
// expand merid_dist/dmp about lat_mid_rad to order e2*dlat_rad^2
var e2 = Math.Pow(Spheroid.Eccentricity, 2);
var ratio = Math.Cos(midLatRad) /
Math.Sqrt(1 - e2 * Math.Pow(Math.Sin(midLatRad), 2)) *
(1.0 + (e2 * Math.Cos(2 * midLatRad) / 8 -
(1 + 2 * Math.Pow(Math.Tan(midLatRad), 2)) / 24 -
e2 / 12) * latDeltaRad * latDeltaRad);
distance = Math.Sqrt(Math.Pow(meridionalDistance, 2) + Math.Pow(Spheroid.EquatorialAxis * ratio * lonDeltaRad, 2));
}
else
{
distance = Math.Abs(meridionalDistance / Math.Cos(course.ToRadians()));
}
return new GeodeticLine(new Coordinate(lat1, lon1), new Coordinate(lat2, lon2), distance, course, course > 180 ? course - 180 : course + 180);
}
示例4: CalculateOrthodromicLineInternal
private double[] CalculateOrthodromicLineInternal(IPosition position1, IPosition position2)
{
var point1 = position1.GetCoordinate();
var point2 = position2.GetCoordinate();
if (Math.Abs(point1.Latitude - point2.Latitude) < double.Epsilon && Math.Abs(point1.Longitude - point2.Longitude) < double.Epsilon)
return null;
var lon1 = point1.Longitude.ToRadians();
var lat1 = point1.Latitude.ToRadians();
var lon2 = point2.Longitude.ToRadians();
var lat2 = point2.Latitude.ToRadians();
/*
* Solution of the geodetic inverse problem after T.Vincenty.
* Modified Rainsford's method with Helmert's elliptical terms.
* Effective in any azimuth and at any distance short of antipodal.
*
* Latitudes and longitudes in radians positive North and East.
* Forward azimuths at both points returned in radians from North.
*
* Programmed for CDC-6600 by LCDR L.Pfeifer NGS ROCKVILLE MD 18FEB75
* Modified for IBM SYSTEM 360 by John G.Gergen NGS ROCKVILLE MD 7507
* Ported from Fortran to Java by Martin Desruisseaux.
*
* Source: ftp://ftp.ngs.noaa.gov/pub/pcsoft/for_inv.3d/source/inverse.for
* subroutine INVER1
*/
const int maxIterations = 100;
const double eps = 0.5E-13;
double R = 1 - Spheroid.Flattening;
double tu1 = R * Math.Sin(lat1) / Math.Cos(lat1);
double tu2 = R * Math.Sin(lat2) / Math.Cos(lat2);
double cu1 = 1 / Math.Sqrt(tu1 * tu1 + 1);
double cu2 = 1 / Math.Sqrt(tu2 * tu2 + 1);
double su1 = cu1 * tu1;
double s = cu1 * cu2;
double baz = s * tu2;
double faz = baz * tu1;
double x = lon2 - lon1;
for (int i = 0; i < maxIterations; i++)
{
double sx = Math.Sin(x);
double cx = Math.Cos(x);
tu1 = cu2 * sx;
tu2 = baz - su1 * cu2 * cx;
double sy = Math.Sqrt(Math.Pow(tu1, 2) + Math.Pow(tu2, 2));
double cy = s * cx + faz;
double y = Math.Atan2(sy, cy);
double SA = s * sx / sy;
double c2a = 1 - SA * SA;
double cz = faz + faz;
if (c2a > 0)
{
cz = -cz / c2a + cy;
}
double e = cz * cz * 2 - 1;
double c = ((-3 * c2a + 4) * Spheroid.Flattening + 4) * c2a * Spheroid.Flattening / 16;
double d = x;
x = ((e * cy * c + cz) * sy * c + y) * SA;
x = (1 - c) * x * Spheroid.Flattening + lon2 - lon1;
if (Math.Abs(d - x) <= eps)
{
x = Math.Sqrt((1 / (R * R) - 1) * c2a + 1) + 1;
x = (x - 2) / x;
c = 1 - x;
c = (x * x / 4 + 1) / c;
d = (0.375 * x * x - 1) * x;
x = e * cy;
s = 1 - 2 * e;
s = ((((sy * sy * 4 - 3) * s * cz * d / 6 - x) * d / 4 + cz) * sy * d + y) * c * R * Spheroid.EquatorialAxis;
// 'faz' and 'baz' are forward azimuths at both points.
faz = Math.Atan2(tu1, tu2);
baz = Math.Atan2(cu1 * sx, baz * cx - su1 * cu2) + Math.PI;
return new[] { s, faz.ToDegrees(), baz.ToDegrees() };
}
}
// No convergence. It may be because coordinate points
// are equals or because they are at antipodes.
const double leps = 1E-10;
if (Math.Abs(lon1 - lon2) <= leps && Math.Abs(lat1 - lat2) <= leps)
{
// Coordinate points are equals
return null;
}
if (Math.Abs(lat1) <= leps && Math.Abs(lat2) <= leps)
{
// Points are on the equator.
return new[] { Math.Abs(lon1 - lon2) * Spheroid.EquatorialAxis, faz.ToDegrees(), baz.ToDegrees() };
}
// Other cases: no solution for this algorithm.
throw new ArithmeticException();
}
示例5: CalculateOrthodromicLine
public GeodeticLine CalculateOrthodromicLine(IPosition position1, IPosition position2)
{
var result = CalculateOrthodromicLineInternal(position1, position2);
if (result == null)
return null;
return new GeodeticLine(position1.GetCoordinate(), position2.GetCoordinate(), result[0], result[1], result[2]);
}
示例6: TryCalculate
public bool TryCalculate(IPosition position, DateTime utcDate, out GeomagnetismResult result)
{
var coordinate = position.GetCoordinate();
var coordinateZ = coordinate as CoordinateZ ?? new CoordinateZ(coordinate.Latitude, coordinate.Longitude, 0);
double lat = coordinateZ.Latitude.ToRadians(),
lon = coordinateZ.Longitude.ToRadians(),
ele = coordinateZ.Elevation / 1000,
dat = JulianDate.JD(utcDate);
var model = _models.SingleOrDefault(mod => mod.ValidFrom <= utcDate && mod.ValidTo > utcDate);
if (model == null)
{
result = default(GeomagnetismResult);
return false;
}
var bound = 1 + model.MainCoefficientsG.GetUpperBound(0);
var sinLat = Math.Sin(lat);
var cosLat = Math.Cos(lat);
var a = _spheroid.EquatorialAxis / 1000;
var f = _spheroid.Flattening;
var b = a * (1.0 - f);
var sinLat2 = sinLat * sinLat;
var cosLat2 = cosLat * cosLat;
var a2 = a * a;
var a4 = a2 * a2;
var b2 = b * b;
var b4 = b2 * b2;
var sr = Math.Sqrt(a2 * cosLat2 + b2 * sinLat2);
var theta = Math.Atan2(cosLat * (ele * sr + a2), sinLat * (ele * sr + b2));
var r = ele * ele + 2.0 * ele * sr + (a4 - (a4 - b4) * sinLat2) / (a2 - (a2 - b2) * sinLat2);
r = Math.Sqrt(r);
var c = Math.Cos(theta);
var s = Math.Sin(theta);
double invS;
if (Math.Abs(s - 0) < double.Epsilon)
invS = 1.0 / (s + 1E-08);
else
invS = 1.0 / (s + 0.0);
var p = new double[bound, bound];
var dp = new double[bound, bound];
p[0, 0] = 1;
p[1, 1] = s;
dp[0, 0] = 0;
dp[1, 1] = c;
p[1, 0] = c;
dp[1, 0] = -s;
for (var i = 2; i < bound; i++)
{
var root = Math.Sqrt((2.0 * i - 1) / (2.0 * i));
p[i, i] = p[i - 1, i - 1] * s * root;
dp[i, i] = (dp[i - 1, i - 1] * s + p[i - 1, i - 1] * c) * root;
}
for (var i = 0; i < bound; i++)
{
double i2 = i*i;
for (var j = Math.Max(i + 1, 2); j < bound; j++)
{
var root1 = Math.Sqrt((j - 1) * (j - 1) - i2);
var root2 = 1.0 / Math.Sqrt(j * j - i2);
p[j, i] = (p[j - 1, i] * c * (2.0 * j - 1) - p[j - 2, i] * root1) * root2;
dp[j, i] = ((dp[j - 1, i] * c - p[j - 1, i] * s) * (2.0 * j - 1) - dp[j - 2, i] * root1) * root2;
}
}
double[,] g = new double[bound, bound], h = new double[bound, bound];
double bRadial = 0.0, bTheta = 0.0, bPhi = 0.0;
var fn0 = _spheroid.MeanRadius / 1000 / r;
var fn = fn0 * fn0;
double[] sm = new double[bound], cm = new double[bound];
sm[0] = Math.Sin(0);
cm[0] = Math.Cos(0);
var yearfrac = (dat - JulianDate.JD(model.ValidFrom)) / 365.25;
for (var i = 1; i < bound; i++)
{
sm[i] = Math.Sin(i * lon);
cm[i] = Math.Cos(i * lon);
for (var j = 0; j < bound; j++)
{
g[i, j] = model.MainCoefficientsG[i, j] + yearfrac * model.SecularCoefficientsG[i, j];
h[i, j] = model.MainCoefficientsH[i, j] + yearfrac * model.SecularCoefficientsH[i, j];
}
double c1 = 0, c2 = 0, c3 = 0;
for (var j = 0; j <= i; j++)
//.........这里部分代码省略.........