本文整理汇总了C#中IMLTrain类的典型用法代码示例。如果您正苦于以下问题:C# IMLTrain类的具体用法?C# IMLTrain怎么用?C# IMLTrain使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
IMLTrain类属于命名空间,在下文中一共展示了IMLTrain类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Init
public void Init(IMLTrain train_0)
{
this._xd87f6a9c53c2ed9f = train_0;
this._x6947f9fc231e17e8 = (IMomentum) train_0;
this._x6c7711ed04d2ac90 = false;
this._x6947f9fc231e17e8.Momentum = 0.0;
this._xd02ba004f6c6d639 = 0.0;
}
示例2: Init
public void Init(IMLTrain train)
{
basicTrainSOM = train as BasicTrainSOM;
if (basicTrainSOM == null)
{
throw new ArgumentException(
String.Format("Argument shoud be of {0} type.", typeof(BasicTrainSOM)), "train");
}
}
示例3: Init
public virtual void Init(IMLTrain train)
{
this._xd87f6a9c53c2ed9f = train;
while (!(train.Method is IMLResettable))
{
throw new TrainingError("To use the reset strategy the machine learning method must support MLResettable.");
}
this._x1306445c04667cc7 = (IMLResettable) this._xd87f6a9c53c2ed9f.Method;
}
示例4: Init
/// <summary>
/// Initialize this strategy.
/// </summary>
///
/// <param name="train">The training algorithm.</param>
public void Init(IMLTrain train)
{
_train = train;
_ready = false;
_setter = (ILearningRate) train;
_trainingSize = train.Training.Count;
_currentLearningRate = 1.0d/_trainingSize;
EncogLogging.Log(EncogLogging.LevelDebug, "Starting learning rate: "
+ _currentLearningRate);
_setter.LearningRate = _currentLearningRate;
}
示例5: HybridStrategy
public HybridStrategy(IMLTrain altTrain, double minImprovement, int tolerateMinImprovement, int alternateCycles)
{
if (((((uint) minImprovement) | 2) != 0) && (0 == 0))
{
this._xa45232be281da68a = altTrain;
this._x6c7711ed04d2ac90 = false;
}
this._x123e81b4d1593407 = 0;
this._x75deb38bfba59a18 = minImprovement;
this._x671aa26bb37ef7df = tolerateMinImprovement;
this._x2801df77d59cbd36 = alternateCycles;
}
示例6: CrossValidationKFold
/// <summary>
/// Construct a cross validation trainer.
/// </summary>
///
/// <param name="train">The training</param>
/// <param name="k">The number of folds.</param>
public CrossValidationKFold(IMLTrain train, int k) : base(train.Method, (FoldedDataSet) train.Training)
{
_train = train;
Folded.Fold(k);
_flatNetwork = ((BasicNetwork) train.Method).Structure.Flat;
_networks = new NetworkFold[k];
for (int i = 0; i < _networks.Length; i++)
{
_networks[i] = new NetworkFold(_flatNetwork);
}
}
示例7: TestTraining
public static void TestTraining(IMLTrain train, double requiredImprove)
{
train.Iteration();
double error1 = train.Error;
for (int i = 0; i < 10; i++)
train.Iteration();
double error2 = train.Error;
double improve = (error1 - error2) / error1;
Assert.IsTrue(improve >= requiredImprove,"Improve rate too low for " + train.GetType().Name +
",Improve=" + improve + ",Needed=" + requiredImprove);
}
示例8: Init
/// <summary>
/// Initialize this strategy.
/// </summary>
///
/// <param name="train">The training algorithm.</param>
public virtual void Init(IMLTrain train)
{
_train = train;
_ready = false;
if (!(train.Method is IMLEncodable))
{
throw new TrainingError(
"To make use of the Greedy strategy the machine learning method must support MLEncodable.");
}
_method = ((IMLEncodable) train.Method);
_lastNetwork = new double[_method.EncodedArrayLength()];
}
示例9: Init
public virtual void Init(IMLTrain train)
{
this._xd87f6a9c53c2ed9f = train;
this._x6c7711ed04d2ac90 = false;
while (!(train.Method is IMLEncodable))
{
throw new TrainingError("To make use of the Greedy strategy the machine learning method must support MLEncodable.");
}
do
{
this._x1306445c04667cc7 = (IMLEncodable) train.Method;
}
while (2 == 0);
this._x8ca12f17f1ae2b01 = new double[this._x1306445c04667cc7.EncodedArrayLength()];
}
示例10: Init
public void Init(IMLTrain train)
{
this._xd87f6a9c53c2ed9f = train;
while (true)
{
this._x6c7711ed04d2ac90 = false;
this._x6947f9fc231e17e8 = (ILearningRate) train;
this._x985befeef351542c = train.Training.Count;
this._x6300a707dc67f3a2 = 1.0 / ((double) this._x985befeef351542c);
EncogLogging.Log(0, "Starting learning rate: " + this._x6300a707dc67f3a2);
do
{
this._x6947f9fc231e17e8.LearningRate = this._x6300a707dc67f3a2;
}
while (-2147483648 == 0);
if (0 == 0)
{
return;
}
}
}
示例11: CrossValidationKFold
public CrossValidationKFold(IMLTrain train, int k)
: base(train.Method, (FoldedDataSet) train.Training)
{
int num;
if ((((uint) k) | 1) != 0)
{
this._xd87f6a9c53c2ed9f = train;
base.Folded.Fold(k);
goto Label_0083;
}
if (0xff != 0)
{
goto Label_0083;
}
Label_0039:
num = 0;
while (num < this._x5f6ed0047d99f4b6.Length)
{
this._x5f6ed0047d99f4b6[num] = new NetworkFold(this._xef94864849922d07);
if (((uint) k) >= 0)
{
}
num++;
}
if (((uint) num) <= uint.MaxValue)
{
return;
}
Label_0083:
this._xef94864849922d07 = ((BasicNetwork) train.Method).Structure.Flat;
this._x5f6ed0047d99f4b6 = new NetworkFold[k];
if (8 == 0)
{
return;
}
goto Label_0039;
}
示例12: x0d87de1eb44df41c
private void x0d87de1eb44df41c(IMLTrain xd87f6a9c53c2ed9f, IMLMethod x1306445c04667cc7, IMLDataSet x1c9e132f434262d8)
{
int maxIteration;
ValidateNetwork.ValidateMethodToData(x1306445c04667cc7, x1c9e132f434262d8);
double propertyDouble = base.Prop.GetPropertyDouble("ML:TRAIN_targetError");
base.Analyst.ReportTrainingBegin();
if ((((uint) maxIteration) & 0) == 0)
{
if (2 == 0)
{
goto Label_0038;
}
maxIteration = base.Analyst.MaxIteration;
if (0xff != 0)
{
goto Label_0038;
}
}
Label_001B:
if (!xd87f6a9c53c2ed9f.TrainingDone && ((maxIteration == -1) || (xd87f6a9c53c2ed9f.IterationNumber < maxIteration)))
{
goto Label_0038;
}
Label_0023:
xd87f6a9c53c2ed9f.FinishTraining();
base.Analyst.ReportTrainingEnd();
return;
Label_0038:
xd87f6a9c53c2ed9f.Iteration();
base.Analyst.ReportTraining(xd87f6a9c53c2ed9f);
if ((xd87f6a9c53c2ed9f.Error <= propertyDouble) || base.Analyst.ShouldStopCommand())
{
goto Label_0023;
}
goto Label_001B;
}
示例13: PerformTraining
/// <summary>
/// Perform the training.
/// </summary>
/// <param name="train">The training method.</param>
/// <param name="method">The ML method.</param>
/// <param name="trainingSet">The training set.</param>
private void PerformTraining(IMLTrain train, IMLMethod method,
IMLDataSet trainingSet)
{
ValidateNetwork.ValidateMethodToData(method, trainingSet);
double targetError = Prop.GetPropertyDouble(
ScriptProperties.MlTrainTargetError);
Analyst.ReportTrainingBegin();
int maxIteration = Analyst.MaxIteration;
if (train.ImplementationType == TrainingImplementationType.OnePass)
{
train.Iteration();
Analyst.ReportTraining(train);
}
else
{
do
{
train.Iteration();
Analyst.ReportTraining(train);
} while ((train.Error > targetError)
&& !Analyst.ShouldStopCommand()
&& !train.TrainingDone
&& ((maxIteration == -1) || (train.IterationNumber < maxIteration)));
}
train.FinishTraining();
Analyst.ReportTrainingEnd();
}
示例14: ReportTraining
/// <summary>
///
/// </summary>
///
public void ReportTraining(IMLTrain train)
{
Console.Out.WriteLine("Iteration #"
+ Format.FormatInteger(train.IterationNumber)
+ " Error:"
+ Format.FormatPercent(train.Error)
+ " elapsed time = "
+ Format.FormatTimeSpan((int) (_stopwatch.ElapsedMilliseconds/Format.MiliInSec)));
}
示例15: Init
/// <summary>
/// Initialize this strategy.
/// </summary>
///
/// <param name="train_0">The training algorithm.</param>
public void Init(IMLTrain train_0)
{
_train = train_0;
_setter = (IMomentum) train_0;
_ready = false;
_setter.Momentum = 0.0d;
_currentMomentum = 0;
}