当前位置: 首页>>代码示例>>C#>>正文


C# IMLMethod类代码示例

本文整理汇总了C#中IMLMethod的典型用法代码示例。如果您正苦于以下问题:C# IMLMethod类的具体用法?C# IMLMethod怎么用?C# IMLMethod使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


IMLMethod类属于命名空间,在下文中一共展示了IMLMethod类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Create

        /// <summary>
        /// Create a SVM trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                              IMLDataSet training, String argsStr)
        {
            if (!(method is SupportVectorMachine))
            {
                throw new EncogError(
                    "SVM Train training cannot be used on a method of type: "
                    + method.GetType().FullName);
            }

            double defaultGamma = 1.0d/((SupportVectorMachine) method).InputCount;
            double defaultC = 1.0d;

            IDictionary<String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);
            double gamma = holder.GetDouble(MLTrainFactory.PropertyGamma,
                                            false, defaultGamma);
            double c = holder.GetDouble(MLTrainFactory.PropertyC, false,
                                        defaultC);

            var result = new SVMTrain((SupportVectorMachine) method, training);
            result.Gamma = gamma;
            result.C = c;
            return result;
        }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:33,代码来源:SVMFactory.cs

示例2: Create

        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                              IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                    "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary<String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);
            int populationSize = holder.GetInt(
				MLTrainFactory.PropertyPopulationSize, false, 5000);
		
		IMLTrain train = new MLMethodGeneticAlgorithm( () => {
			
				IMLMethod result = (IMLMethod) ObjectCloner.DeepCopy(method);
				((IMLResettable)result).Reset();
				return result;
			}, score, populationSize);

		return train;

       
        }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:34,代码来源:GeneticFactory.cs

示例3: Create

        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                              IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                    "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary<String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);
            int populationSize = holder.GetInt(
                MLTrainFactory.PropertyPopulationSize, false, 5000);
            double mutation = holder.GetDouble(
                MLTrainFactory.PropertyMutation, false, 0.1d);
            double mate = holder.GetDouble(MLTrainFactory.PropertyMate,
                                           false, 0.25d);

            IMLTrain train = new NeuralGeneticAlgorithm((BasicNetwork) method,
                                                       new RangeRandomizer(-1, 1), score, populationSize, mutation,
                                                       mate);

            return train;
        }
开发者ID:neismit,项目名称:emds,代码行数:34,代码来源:GeneticFactory.cs

示例4: Randomize

 public override sealed void Randomize(IMLMethod method)
 {
     if (!(method is BasicNetwork))
     {
         throw new EncogError("Ngyyen Widrow only works on BasicNetwork.");
     }
     BasicNetwork network = (BasicNetwork) method;
     Label_00B3:
     new RangeRandomizer(base.Min, base.Max).Randomize(network);
     int num = 0;
     int l = 1;
     while (true)
     {
         if (l >= (network.LayerCount - 1))
         {
             if ((num >= 1) && ((((uint) num) + ((uint) l)) <= uint.MaxValue))
             {
                 this._x43f451310e815b76 = network.InputCount;
                 this._xd7d571ecee49d1e4 = 0.7 * Math.Pow((double) num, 1.0 / ((double) network.InputCount));
                 base.Randomize(network);
                 return;
             }
             return;
         }
         num += network.GetLayerTotalNeuronCount(l);
         if (((uint) l) < 0)
         {
             goto Label_00B3;
         }
         l++;
     }
 }
开发者ID:neismit,项目名称:emds,代码行数:32,代码来源:NguyenWidrowRandomizer.cs

示例5: CrossTraining

 /// <summary>
 /// Construct a cross trainer.
 /// </summary>
 ///
 /// <param name="network">The network.</param>
 /// <param name="training">The training data.</param>
 protected CrossTraining(IMLMethod network, FoldedDataSet training)
     : base(TrainingImplementationType.Iterative)
 {
     _network = network;
     Training = training;
     _folded = training;
 }
开发者ID:CreativelyMe,项目名称:encog-dotnet-core,代码行数:13,代码来源:CrossTraining.cs

示例6: Randomize

        /// <summary>
        /// The Nguyen-Widrow initialization algorithm is the following :
        /// 
        /// 1. Initialize all weight of hidden layers with (ranged) random values
        /// 2. For each hidden layer
        /// 2.1 calculate beta value, 0.7/// Nth(#neurons of input layer) root of
        /// #neurons of current layer 
        /// 2.2 for each synapse
        /// 2.1.1 for each weight 
        /// 2.1.2 Adjust weight by dividing by norm of weight for neuron and
        /// multiplying by beta value
        /// </summary>
        /// <param name="method">The network to randomize.</param>
        public override sealed void Randomize(IMLMethod method)
        {
            if (!(method is BasicNetwork))
            {
                throw new EncogError("Ngyyen Widrow only works on BasicNetwork.");
            }

            var network = (BasicNetwork) method;

            new RangeRandomizer(Min, Max).Randomize(network);

            int hiddenNeurons = 0;

            for (int i = 1; i < network.LayerCount - 1; i++)
            {
                hiddenNeurons += network.GetLayerTotalNeuronCount(i);
            }

            // can't really do much, use regular randomization
            if (hiddenNeurons < 1)
            {
                return;
            }

            _inputCount = network.InputCount;
            _beta = 0.7d*Math.Pow(hiddenNeurons, 1.0d/network.InputCount);

            base.Randomize(network);
        }
开发者ID:OperatorOverload,项目名称:encog-cs,代码行数:42,代码来源:NguyenWidrowRandomizer.cs

示例7: Encode

 public IGenome Encode(IMLMethod phenotype)
 {
     var rbfNet = (RBFNetwork) phenotype;
     var result = new DoubleArrayGenome(Size);
     Array.Copy(rbfNet.LongTermMemory, 0, result.Data, 0, _size);
     return result;
 }
开发者ID:Raghavendra1509,项目名称:aifh,代码行数:7,代码来源:RBFNetworkGenomeCODEC.cs

示例8: Create

 public IMLTrain Create(IMLMethod method, IMLDataSet training, string argsStr)
 {
     if (!(method is SupportVectorMachine))
     {
         throw new EncogError("SVM Train training cannot be used on a method of type: " + method.GetType().FullName);
     }
     double defaultValue = 1.0 / ((double) ((SupportVectorMachine) method).InputCount);
     while (true)
     {
         double num4;
         SVMTrain train;
         double num2 = 1.0;
         IDictionary<string, string> theParams = ArchitectureParse.ParseParams(argsStr);
         ParamsHolder holder = new ParamsHolder(theParams);
         double num3 = holder.GetDouble("GAMMA", false, defaultValue);
         do
         {
             num4 = holder.GetDouble("C", false, num2);
             train = new SVMTrain((SupportVectorMachine) method, training) {
                 Gamma = num3
             };
         }
         while (((uint) defaultValue) > uint.MaxValue);
         if ((((uint) num2) + ((uint) num3)) <= uint.MaxValue)
         {
             train.C = num4;
             return train;
         }
     }
 }
开发者ID:neismit,项目名称:emds,代码行数:30,代码来源:SVMFactory.cs

示例9: CalculateScore

 public double CalculateScore(IMLMethod network)
 {
     var pilot = new NeuralRobot((BasicNetwork)network, false, RobotContol.SourceLocation, RobotContol.DestLocation);
     int score = pilot.ScorePilot();
     //RobotContol.Scores.Add(score);
     return score;
 }
开发者ID:tmassey,项目名称:mtos,代码行数:7,代码来源:RobotScore.cs

示例10: CrossTraining

 protected CrossTraining(IMLMethod network, FoldedDataSet training)
     : base(TrainingImplementationType.Iterative)
 {
     this._x87a7fc6a72741c2e = network;
     this.Training = training;
     this._x3952df2eab48841c = training;
 }
开发者ID:neismit,项目名称:emds,代码行数:7,代码来源:CrossTraining.cs

示例11: Create

        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                              IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                    "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary<String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);
            double startTemp = holder.GetDouble(
                MLTrainFactory.PropertyTemperatureStart, false, 10);
            double stopTemp = holder.GetDouble(
                MLTrainFactory.PropertyTemperatureStop, false, 2);

            int cycles = holder.GetInt(MLTrainFactory.Cycles, false, 100);

            IMLTrain train = new NeuralSimulatedAnnealing(
                (BasicNetwork) method, score, startTemp, stopTemp, cycles);

            return train;
        }
开发者ID:OperatorOverload,项目名称:encog-cs,代码行数:33,代码来源:AnnealFactory.cs

示例12: Create

 public IMLTrain Create(IMLMethod method, IMLDataSet training, string args)
 {
     if (!(method is RBFNetwork))
     {
         throw new EncogError("RBF-SVD training cannot be used on a method of type: " + method.GetType().FullName);
     }
     return new SVDTraining((RBFNetwork) method, training);
 }
开发者ID:neismit,项目名称:emds,代码行数:8,代码来源:RBFSVDFactory.cs

示例13: NetworkSize

 public static int NetworkSize(IMLMethod network)
 {
     if (!(network is IMLEncodable))
     {
         throw new NeuralNetworkError("This machine learning method cannot be encoded:" + network.GetType().FullName);
     }
     return ((IMLEncodable) network).EncodedArrayLength();
 }
开发者ID:neismit,项目名称:emds,代码行数:8,代码来源:NetworkCODEC.cs

示例14: ArrayToNetwork

 public static void ArrayToNetwork(double[] array, IMLMethod network)
 {
     if (!(network is IMLEncodable))
     {
         throw new NeuralNetworkError("This machine learning method cannot be encoded:" + network.GetType().FullName);
     }
     ((IMLEncodable) network).DecodeFromArray(array);
 }
开发者ID:neismit,项目名称:emds,代码行数:8,代码来源:NetworkCODEC.cs

示例15: CalculateScore

 /// <inheritdoc />
 public double CalculateScore(IMLMethod genome)
 {
     var prg = (EncogProgram) genome;
     var pop = (PrgPopulation) prg.Population;
     IMLData inputData = new BasicMLData(pop.Context.DefinedVariables.Count);
     prg.Compute(inputData);
     return 0;
 }
开发者ID:benw408701,项目名称:MLHCTransactionPredictor,代码行数:9,代码来源:ZeroEvalScoreFunction.cs


注:本文中的IMLMethod类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。