当前位置: 首页>>代码示例>>C#>>正文


C# IMLData类代码示例

本文整理汇总了C#中IMLData的典型用法代码示例。如果您正苦于以下问题:C# IMLData类的具体用法?C# IMLData怎么用?C# IMLData使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


IMLData类属于命名空间,在下文中一共展示了IMLData类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: DetermineTreeType

        public int DetermineTreeType(OutputEquilateral eqField, IMLData output)
        {
            int result;

            if (eqField != null)
            {
                result = eqField.Equilateral.Decode(output.Data);
            }
            else
            {
                double maxOutput = Double.NegativeInfinity;
                result = -1;

                for (int i = 0; i < output.Count; i++)
                {
                    if (output[i] > maxOutput)
                    {
                        maxOutput = output[i];
                        result = i;
                    }
                }
            }

            return result;
        }
开发者ID:firestrand,项目名称:encog-dotnet-core,代码行数:25,代码来源:Evaluate.cs

示例2: Compute

 public IMLData Compute(IMLData input)
 {
     int num;
     Matrix col;
     Matrix matrix2;
     IMLData data = new BasicMLData(this.OutputCount);
     if (0 == 0)
     {
         goto Label_003F;
     }
     Label_000F:
     matrix2 = Matrix.CreateRowMatrix(input.Data);
     if (3 == 0)
     {
         goto Label_003F;
     }
     data[num] = MatrixMath.DotProduct(matrix2, col);
     num++;
     Label_0034:
     if (num < this.OutputCount)
     {
         col = this._weights.GetCol(num);
         goto Label_000F;
     }
     return data;
     Label_003F:
     num = 0;
     goto Label_0034;
 }
开发者ID:neismit,项目名称:emds,代码行数:29,代码来源:SOMNetwork.cs

示例3: x3342cd5bc15ae07b

 private void x3342cd5bc15ae07b(int x7079b5ea66d0bae1, IMLData xcdaeea7afaf570ff)
 {
     for (int i = 0; i < this._x87a7fc6a72741c2e.InputCount; i++)
     {
         this._x87a7fc6a72741c2e.Weights[i, x7079b5ea66d0bae1] = xcdaeea7afaf570ff[i];
     }
 }
开发者ID:neismit,项目名称:emds,代码行数:7,代码来源:SOMClusterCopyTraining.cs

示例4: Compute

 public override sealed IMLData Compute(IMLData input)
 {
     int num;
     BiPolarMLData data = new BiPolarMLData(input.Count);
     if (0 == 0)
     {
         if (((uint) num) <= uint.MaxValue)
         {
             if (3 == 0)
             {
                 return data;
             }
             goto Label_0053;
         }
     }
     else
     {
         goto Label_0053;
     }
     Label_003B:
     EngineArray.ArrayCopy(base.CurrentState.Data, data.Data);
     return data;
     Label_0053:
     EngineArray.ArrayCopy(input.Data, base.CurrentState.Data);
     this.Run();
     for (num = 0; num < base.CurrentState.Count; num++)
     {
         data.SetBoolean(num, BiPolarUtil.Double2bipolar(base.CurrentState[num]));
     }
     goto Label_003B;
 }
开发者ID:neismit,项目名称:emds,代码行数:31,代码来源:HopfieldNetwork.cs

示例5: CopyInputPattern

 /// <summary>
 /// Copy the specified input pattern to the weight matrix. This causes an
 /// output neuron to learn this pattern "exactly". This is useful when a
 /// winner is to be forced.
 /// </summary>
 ///
 /// <param name="outputNeuron">The output neuron to set.</param>
 /// <param name="input">The input pattern to copy.</param>
 private void CopyInputPattern(int outputNeuron, IMLData input)
 {
     for (int inputNeuron = 0; inputNeuron < _network.InputCount; inputNeuron++)
     {
         _network.Weights[inputNeuron, outputNeuron] = input[inputNeuron];
     }
 }
开发者ID:encog,项目名称:encog-silverlight-core,代码行数:15,代码来源:SOMClusterCopyTraining.cs

示例6: Classify

        /// <summary>
        /// Classify the input into one of the output clusters.
        /// </summary>
        /// <param name="input">The input.</param>
        /// <returns>The cluster it was clasified into.</returns>
        public int Classify(IMLData input)
        {
            if (input.Count > InputCount)
            {
                throw new NeuralNetworkError(
                    "Can't classify SOM with input size of " + InputCount
                    + " with input data of count " + input.Count);
            }

            double[][] m = _weights.Data;
            double minDist = Double.PositiveInfinity;
            int result = -1;

            for (int i = 0; i < OutputCount; i++)
            {
                double dist = EngineArray.EuclideanDistance(input, m[i]);
                if (dist < minDist)
                {
                    minDist = dist;
                    result = i;
                }
            }

            return result;
        }
开发者ID:jongh0,项目名称:MTree,代码行数:30,代码来源:SOMNetwork.cs

示例7: AddPattern

        /// <summary>
        /// Train the neural network for the specified pattern. The neural network
        /// can be trained for more than one pattern. To do this simply call the
        /// train method more than once.
        /// </summary>
        ///
        /// <param name="pattern">The pattern to train for.</param>
        public void AddPattern(IMLData pattern)
        {
            if (pattern.Count != NeuronCount)
            {
                throw new NeuralNetworkError("Network with " + NeuronCount
                                             + " neurons, cannot learn a pattern of size "
                                             + pattern.Count);
            }

            // Create a row matrix from the input, convert boolean to bipolar
            Matrix m2 = Matrix.CreateRowMatrix(pattern.Data);
            // Transpose the matrix and multiply by the original input matrix
            Matrix m1 = MatrixMath.Transpose(m2);
            Matrix m3 = MatrixMath.Multiply(m1, m2);

            // matrix 3 should be square by now, so create an identity
            // matrix of the same size.
            Matrix identity = MatrixMath.Identity(m3.Rows);

            // subtract the identity matrix
            Matrix m4 = MatrixMath.Subtract(m3, identity);

            // now add the calculated matrix, for this pattern, to the
            // existing weight matrix.
            ConvertHopfieldMatrix(m4);
        }
开发者ID:OperatorOverload,项目名称:encog-cs,代码行数:33,代码来源:HopfieldNetwork.cs

示例8: CalculateError

 /// <inheritdoc/>
 public void CalculateError(IMLData ideal, double[] actual, double[] error)
 {
     for (int i = 0; i < actual.Length; i++)
     {
         error[i] = ideal[i] - actual[i];
     }
 }
开发者ID:Romiko,项目名称:encog-dotnet-core,代码行数:8,代码来源:LinearErrorFunction.cs

示例9: CalculateBMU

        /// <summary>
        /// Calculate the best matching unit (BMU). This is the output neuron that
        /// has the lowest Euclidean distance to the input vector.
        /// </summary>
        ///
        /// <param name="input">The input vector.</param>
        /// <returns>The output neuron number that is the BMU.</returns>
        public int CalculateBMU(IMLData input)
        {
            int result = 0;

            // Track the lowest distance so far.
            double lowestDistance = Double.MaxValue;

            for (int i = 0; i < _som.OutputCount; i++)
            {
                double distance = CalculateEuclideanDistance(
                    _som.Weights, input, i);

                // Track the lowest distance, this is the BMU.
                if (distance < lowestDistance)
                {
                    lowestDistance = distance;
                    result = i;
                }
            }

            // Track the worst distance, this is the error for the entire network.
            if (lowestDistance > _worstDistance)
            {
                _worstDistance = lowestDistance;
            }

            return result;
        }
开发者ID:OperatorOverload,项目名称:encog-cs,代码行数:35,代码来源:BestMatchingUnit.cs

示例10: Add

 public override void Add(IMLData data)
 {
     if (!(data is ImageMLData))
     {
         throw new NeuralNetworkError("This data set only supports ImageNeuralData or Image objects.");
     }
     base.Add(data);
 }
开发者ID:neismit,项目名称:emds,代码行数:8,代码来源:ImageMLDataSet.cs

示例11: BasicMLDataPair

 public BasicMLDataPair(IMLData input, IMLData ideal, IMLData calced, IMLData error)
 {
     this._significance = 1.0;
     this._input = input;
     this._ideal = ideal;
     this._calced = calced;
     this._error = error;
 }
开发者ID:neismit,项目名称:emds,代码行数:8,代码来源:BasicMLDataPair.cs

示例12: LoadedRow

 /// <summary>
 ///     Construct a loaded row from an IMLData.
 /// </summary>
 /// <param name="format">The format to store the numbers in.</param>
 /// <param name="data">The data to use.</param>
 /// <param name="extra">The extra positions to allocate.</param>
 public LoadedRow(CSVFormat format, IMLData data, int extra)
 {
     int count = data.Count;
     _data = new String[count + extra];
     for (int i = 0; i < count; i++)
     {
         _data[i] = format.Format(data[i], 5);
     }
 }
开发者ID:jongh0,项目名称:MTree,代码行数:15,代码来源:LoadedRow.cs

示例13: DenormalizeColumn

        /// <inheritdoc />
        public String DenormalizeColumn(ColumnDefinition colDef, IMLData data,
            int dataColumn)
        {
            double value = data[dataColumn];
            double result = ((colDef.Low - colDef.High)*value
                             - _normalizedHigh*colDef.Low + colDef.High
                             *_normalizedLow)
                            /(_normalizedLow - _normalizedHigh);

            // typically caused by a number that should not have been normalized
            // (i.e. normalization or actual range is infinitely small.
            if (Double.IsNaN(result))
            {
                return "" + (((_normalizedHigh - _normalizedLow)/2) + _normalizedLow);
            }
            return "" + result;
        }
开发者ID:amitla,项目名称:encog-dotnet-core,代码行数:18,代码来源:RangeNormalizer.cs

示例14: DenormalizeColumn

        /// <inheritdoc />
        public String DenormalizeColumn(ColumnDefinition colDef, IMLData data,
            int dataColumn)
        {
            double bestValue = Double.NegativeInfinity;
            int bestIndex = 0;

            for (int i = 0; i < data.Count; i++)
            {
                double d = data[dataColumn + i];
                if (d > bestValue)
                {
                    bestValue = d;
                    bestIndex = i;
                }
            }

            return colDef.Classes[bestIndex];
        }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:19,代码来源:OneOfNNormalizer.cs

示例15: BasicMLComplexData

 /// <summary>
 /// Construct a new BasicMLData object from an existing one. This makes a
 /// copy of an array. If MLData is not complex, then only reals will be 
 /// created. 
 /// </summary>
 /// <param name="d">The object to be copied.</param>
 public BasicMLComplexData(IMLData d)
 {
     if (d is IMLComplexData)
     {
         var c = (IMLComplexData) d;
         for (int i = 0; i < d.Count; i++)
         {
             _data[i] = new ComplexNumber(c.GetComplexData(i));
         }
     }
     else
     {
         for (int i = 0; i < d.Count; i++)
         {
             _data[i] = new ComplexNumber(d[i], 0);
         }
     }
 }
开发者ID:johannsutherland,项目名称:encog-dotnet-core,代码行数:24,代码来源:BasicMLComplexData.cs


注:本文中的IMLData类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。