当前位置: 首页>>代码示例>>C#>>正文


C# IImage.Clone方法代码示例

本文整理汇总了C#中IImage.Clone方法的典型用法代码示例。如果您正苦于以下问题:C# IImage.Clone方法的具体用法?C# IImage.Clone怎么用?C# IImage.Clone使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在IImage的用法示例。


在下文中一共展示了IImage.Clone方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ProcessImageAsync

        public Task<IProcessServiceResult> ProcessImageAsync(string processorName, IImage image)
        {
            var result = new ImageProcessServiceResult();
            var processor = _processors.FirstOrDefault(p => p.Name == processorName);
            if (processor != null)
            {
                try
                {
                    var imageForProcessing = image.Clone();
                    processor.ProcessImage(imageForProcessing);
                    result.ProcessedImage = imageForProcessing;
                    result.Successful = true;
                }
                catch (Exception e)
                {
                    result.Successful = false;
                    result.ErrorMessage = e.Message;
                }
            }
            else
            {
                result.Successful = false;
                result.ErrorMessage = $"Can't find processor with name {processorName}";
            }

            return Task.FromResult((IProcessServiceResult)result);
        }
开发者ID:VysotskiVadim,项目名称:bsuir-misoi-car-number,代码行数:27,代码来源:ImageProcessorsService.cs

示例2: ProcessImage

 public void ProcessImage(IImage image)
 {
     var imageForProcessing = image.Clone();
     _edgeFilter.ProcessImage(imageForProcessing);
     var segments = _segmentationAlgorithm.ProcessImage(imageForProcessing);
     IEnumerable<IFindResult> findResult = _segmentFindAnalyzer.Find(segments);
     _findResultDrawer.DrawFindResults(image, findResult);
 }
开发者ID:DashaVeresova,项目名称:RecognitionOfDrivingLicenses,代码行数:8,代码来源:SelectFounedAreaAfterSegmentationImageProcessor.cs

示例3: HandleFindResults

 public void HandleFindResults(IImage image, IEnumerable<IFindResult> results)
 {
     foreach (var result in results)
     {
         var clone = image.Clone();
         clone.Clip(result.Points, result.Angle);
         var partFindResult = _findAlgoritm.Find(clone);
         _findResultsHandler.HandleFindResults(clone, partFindResult);
     }
 }
开发者ID:VysotskiVadim,项目名称:bsuir-misoi-car-number,代码行数:10,代码来源:ClipAndProcessFindResult.cs

示例4: HandleFindResults

 public void HandleFindResults(IImage image, IEnumerable<IFindResult> results)
 {
     var findResults = results as IFindResult[] ?? results.ToArray();
     foreach (var findResult in findResults)
     {
         var coppy = image.Clone();
         coppy.Clip(findResult.Points, findResult.Angle);
         _imageRepository.SaveImageAsync(coppy).Wait();
     }
 }
开发者ID:VysotskiVadim,项目名称:bsuir-misoi-car-number,代码行数:10,代码来源:SaveClipedResult.cs

示例5: IdentifyAsync

        public Task<IIdentifyResult> IdentifyAsync(IImage inputImage)
        {
            var result = new IdentifyResult();

            var imageClone = inputImage.Clone();
            var segments = _segmentationAlgoritm.ProcessImage(imageClone);

            var selectedAreas = _segmentFindAnalyzer.Find(segments);

            _findResultsHandler.HandleFindResults(inputImage, selectedAreas);
            result.ProcessedImage = inputImage;

            return Task.FromResult((IIdentifyResult)result);
        }
开发者ID:VysotskiVadim,项目名称:bsuir-misoi-car-number,代码行数:14,代码来源:CarNumnerIdentifyService.cs

示例6: ConverToGrayColors

        public void ConverToGrayColors(IImage image)
        {
            var original = image.Clone();

            for (int i = 0; i < original.Width; i++)
            {
                for (int j = 0; j < original.Height; j++)
                {
                    var red = original.GetPixel(i, j).R;
                    var green = original.GetPixel(i, j).G;
                    var blue = original.GetPixel(i, j).B;
                    var pixelLum = (byte)(0.21 * red + 0.71 * green + 0.07 * blue);
                    image.SetPixel(i, j, new Pixel { R = pixelLum, G = pixelLum, B = pixelLum });
                }
            }
        }
开发者ID:VysotskiVadim,项目名称:bsuir-misoi-car-number,代码行数:16,代码来源:TextFindProcessor.cs

示例7: saveDebugImage

 private void saveDebugImage(IImage image, string name)
 {
     if (isTraining)
         return;
     if (debugImages == null)
     {
         // if (!Directory.Exists(debugFolder))
         // {
         //     Directory.CreateDirectory(debugFolder);
         // }
         // image.Save(debugFolder + name + ".png");
         return;
     }
     DebugImage debugImage = new DebugImage();
     debugImage.Image = (IImage)image.Clone();
     debugImage.Name = name;
     debugImages.Add(debugImage);
 }
开发者ID:swkrueger,项目名称:signrider,代码行数:18,代码来源:FeatureRecognizer.cs

示例8: ProcessImage

 public void ProcessImage(IImage image)
 {
     var imageClone = image.Clone();
     IEnumerable<IFindResult> findResult = _findAlgoritm.Find(imageClone);
     _findResultsHandler.HandleFindResults(image, findResult);
 }
开发者ID:VysotskiVadim,项目名称:bsuir-misoi-car-number,代码行数:6,代码来源:FindInImageAndHandleResultProcessor.cs

示例9: TransfromImageForwards

        public MaskedImage TransfromImageForwards(IImage image, bool preserveSize = false)
        {
            MaskedImage undistorted;
            var influences = FindInfluenceMatrix(image.RowCount, image.ColumnCount);
            Matrix<double>[] matrices = new Matrix<double>[image.ChannelsCount];

            if(preserveSize)
            {
                // New image is in old one's coords
                undistorted = new MaskedImage(image.Clone());
                for(int i = 0; i < image.ChannelsCount; ++i)
                {
                    matrices[i] = new DenseMatrix(image.RowCount, image.ColumnCount);
                    undistorted.SetMatrix(matrices[i], i);
                }

                // Bound processing to smaller of images in each dimesions
                int minX = Math.Max(0, _finalTopLeft.X);
                int maxX = Math.Min(image.ColumnCount, _finalSize.X + _finalTopLeft.X);
                int minY = Math.Max(0, _finalTopLeft.Y);
                int maxY = Math.Min(image.RowCount, _finalSize.Y + _finalTopLeft.Y);
                for(int x = minX; x < maxX; ++x)
                {
                    for(int y = minY; y < maxY; ++y)
                    {
                        double influenceTotal = 0.0;
                        double[] val = new double[image.ChannelsCount];
                        foreach(var inf in influences[y - _finalTopLeft.Y, x - _finalTopLeft.X]) // Move Pu to influence matrix coords
                        {
                            for(int i = 0; i < image.ChannelsCount; ++i)
                                val[i] += image[inf.Yd, inf.Xd, i] * inf.Influence;
                            influenceTotal += inf.Influence;
                        }
                        if(influenceTotal > 0.25)
                        {
                            for(int i = 0; i < image.ChannelsCount; ++i)
                                matrices[i].At(y, x, val[i] / influenceTotal);
                            undistorted.SetMaskAt(y, x, true);
                        }
                        else
                        {
                            undistorted.SetMaskAt(y, x, false);
                        }
                    }
                }
            }
            else
            {
                // New image is in same coords as influence matrix
                for(int i = 0; i < image.ChannelsCount; ++i)
                    matrices[i] = new DenseMatrix(_finalSize.Y, _finalSize.X);
                IImage img = image.Clone();
                for(int i = 0; i < image.ChannelsCount; ++i)
                    img.SetMatrix(matrices[i], i);
                undistorted = new MaskedImage(image.Clone());

                for(int x = 0; x < _finalSize.X; ++x)
                {
                    for(int y = 0; y < _finalSize.Y; ++y)
                    {
                        double influenceTotal = 0.0;
                        double[] val = new double[image.ChannelsCount];
                        foreach(var inf in influences[y, x])
                        {
                            for(int i = 0; i < image.ChannelsCount; ++i)
                                val[i] += image[inf.Yd, inf.Xd, i] * inf.Influence;
                            influenceTotal += inf.Influence;
                        }
                        if(influenceTotal > 0.5)
                        {
                            for(int i = 0; i < image.ChannelsCount; ++i)
                                matrices[i].At(y, x, val[i] / influenceTotal);
                            undistorted.SetMaskAt(y, x, true);
                        }
                        else
                        {
                            undistorted.SetMaskAt(y, x, false);
                        }
                    }
                }
            }

            return undistorted;
        }
开发者ID:KFlaga,项目名称:Cam3D,代码行数:84,代码来源:ImageTransformer.cs

示例10: TransfromImageBackwards

        public MaskedImage TransfromImageBackwards(IImage image, bool preserveSize = false)
        {
            MaskedImage undistorted;
            FindTransformedImageSize(image.RowCount, image.ColumnCount);

            Matrix<double>[] matrices = new Matrix<double>[image.ChannelsCount];
            if(preserveSize)
            {
                undistorted = new MaskedImage(image.Clone());
                for(int i = 0; i < image.ChannelsCount; ++i)
                {
                    matrices[i] = new DenseMatrix(image.RowCount, image.ColumnCount);
                    undistorted.SetMatrix(matrices[i], i);
                }
            }
            else
            {
                IImage img = image.Clone();
                for(int i = 0; i < image.ChannelsCount; ++i)
                {
                    matrices[i] = new DenseMatrix(_finalSize.Y, _finalSize.X);
                    img.SetMatrix(matrices[i], i);
                }
                undistorted = new MaskedImage(image.Clone());
            }

            int R = InterpolationRadius;
            int R21 = R * 2 + 1;
            for(int x = 0; x < matrices[0].ColumnCount; ++x)
            {
                for(int y = 0; y < matrices[0].RowCount; ++y)
                {
                    // Cast point from new image to old one
                    Vector2 oldCoords = Transformation.TransformPointBackwards(new Vector2(x: x, y: y));
                    Vector2 aa = Transformation.TransformPointForwards(oldCoords);

                    IntVector2 oldPixel = new IntVector2(oldCoords);
                    // Check if point is in old image range or points to undefined point
                    if(oldCoords.X < 0 || oldCoords.X > image.ColumnCount ||
                        oldCoords.Y < 0 || oldCoords.Y > image.RowCount ||
                        image.HaveValueAt(oldPixel.Y, oldPixel.X) == false)
                    {
                        // Point out of range, so set to black
                        for(int i = 0; i < image.ChannelsCount; ++i)
                        {
                            matrices[i].At(y, x, 0.0);
                            undistorted.SetMaskAt(y, x, false);
                        }
                    }
                    else
                    {
                        // Interpolate value from patch in old image
                        double[,] influence = new double[R21, R21];
                        double totalInf = 0;
                        // For each pixel in neighbourhood find its distance and influence of Pu on it
                        for(int dx = -R; dx <= R; ++dx)
                        {
                            for(int dy = -R; dy <= R; ++dy)
                            {
                                double distance = _computeDistance(oldCoords, oldPixel.X + dx, oldPixel.Y + dy);
                                influence[dx + R, dy + R] = 1.0 / distance;
                                totalInf += influence[dx + R, dy + R];
                            }
                        }
                        double infScale = 1.0 / totalInf; // Scale influence, so that its sum over all pixels in radius is 1
                        double[] val = new double[image.ChannelsCount];
                        for(int dx = -R; dx <= R; ++dx)
                        {
                            for(int dy = -R; dy <= R; ++dy)
                            {
                                double inf = influence[dx + R, dy + R] * infScale;
                                // Store color for new point considering influence from neighbours
                                int ix = Math.Max(0, Math.Min(image.ColumnCount - 1, oldPixel.X + dx));
                                int iy = Math.Max(0, Math.Min(image.RowCount - 1, oldPixel.Y + dy));
                                for(int i = 0; i < image.ChannelsCount; ++i)
                                {
                                    val[i] += image[iy, ix, i] * inf;
                                }
                            }
                        }
                        for(int i = 0; i < image.ChannelsCount; ++i)
                        {
                            matrices[i].At(y, x, val[i]);
                        }
                    }
                }
            }

            return undistorted;
        }
开发者ID:KFlaga,项目名称:Cam3D,代码行数:90,代码来源:ImageTransformer.cs


注:本文中的IImage.Clone方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。