当前位置: 首页>>代码示例>>C#>>正文


C# IGenomeFactory.CreateGenomeList方法代码示例

本文整理汇总了C#中IGenomeFactory.CreateGenomeList方法的典型用法代码示例。如果您正苦于以下问题:C# IGenomeFactory.CreateGenomeList方法的具体用法?C# IGenomeFactory.CreateGenomeList怎么用?C# IGenomeFactory.CreateGenomeList使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在IGenomeFactory的用法示例。


在下文中一共展示了IGenomeFactory.CreateGenomeList方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Main

        static void Main(string[] args)
        {
            // Initialise log4net (log to console).
            XmlConfigurator.Configure(new FileInfo("log4net.properties"));

            // Experiment classes encapsulate much of the nuts and bolts of setting up a NEAT search.
            XorExperiment experiment = new XorExperiment();

            // Load config XML.
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load("xor.config.xml");
            experiment.Initialize("XOR", xmlConfig.DocumentElement);

            // Create a genome factory with our neat genome parameters object and the appropriate number of input and output neuron genes.
            _genomeFactory = experiment.CreateGenomeFactory();

            // Create an initial population of randomly generated genomes.
            _genomeList = _genomeFactory.CreateGenomeList(150, 0);

            // Create evolution algorithm and attach update event.
            _ea = experiment.CreateEvolutionAlgorithm(_genomeFactory, _genomeList);
            _ea.UpdateEvent += new EventHandler(ea_UpdateEvent);

            // Start algorithm (it will run on a background thread).
            _ea.StartContinue();

            // Hit return to quit.
            Console.ReadLine();
        }
开发者ID:homoluden,项目名称:SharpNEAT,代码行数:29,代码来源:ProgramExample.cs

示例2: NeatTrainer

        public NeatTrainer(ExperimentSettings experimentSettings, NeatEvolutionAlgorithmParameters evolutionAlgorithmParameters, TrainingGameSettings gameSettings)
        {
            var neuromonPhenomeEvaluator = new NeuromonEvaluator(gameSettings, experimentSettings);
            var neatGenomeParameters = new NeatGenomeParameters();

            _neuromonExperiment = new NeuromonExperiment(experimentSettings, evolutionAlgorithmParameters, neuromonPhenomeEvaluator, neatGenomeParameters);

            _genomeIo = new GenomeIo(_neuromonExperiment);
            _genomeFactory = _neuromonExperiment.CreateGenomeFactory();

            if (experimentSettings.LoadExistingPopulation)
            {
                _genomePopulation = _genomeIo.Read(experimentSettings.ExistingPopulationFilePath);
            }
            else
            {
                // Randomly generate a new population
                _genomePopulation = _genomeFactory.CreateGenomeList(experimentSettings.PopulationSize, 0);
            }

            _genomeIo.CacheChampion(_genomePopulation.OrderByDescending(g => g.EvaluationInfo.Fitness).First());

            _fitnessStagnationDetector = new FitnessStagnationDetector(experimentSettings.StagnationDetectionTriggerValue);

            _desiredFitness = experimentSettings.DesiredFitness;

            _previousGeneration = 0;
            _overallBestFitness = 0.0;
        }
开发者ID:alexjneves,项目名称:Neuromon,代码行数:29,代码来源:NeatTrainer.cs

示例3: Main

        private static void Main(string[] args)
        {
            Debug.Assert(args != null && args.Length == 2,
                "Experiment configuration file and number of runs are required!");

            // Read in experiment configuration file
            string experimentName = args[0];
            int numRuns = Int32.Parse(args[1]);

            // Initialise log4net (log to console).
            XmlConfigurator.Configure(new FileInfo("log4net.properties"));

            // Experiment classes encapsulate much of the nuts and bolts of setting up a NEAT search.
            SteadyStateMazeNavigationNoveltyExperiment experiment = new SteadyStateMazeNavigationNoveltyExperiment();

            // Load config XML.
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load("./ExperimentConfigurations/" + experimentName);
            experiment.Initialize("Novelty", xmlConfig.DocumentElement, null, null);

            // Create a genome factory with our neat genome parameters object and the appropriate number of input and output neuron genes.
            _genomeFactory = experiment.CreateGenomeFactory();

            // Create an initial population of randomly generated genomes.
            _genomeList = _genomeFactory.CreateGenomeList(experiment.DefaultPopulationSize, 0);

            // Create evolution algorithm and attach update event.
            _ea = experiment.CreateEvolutionAlgorithm(_genomeFactory, _genomeList);
            _ea.UpdateEvent += ea_UpdateEvent;

            // Start algorithm (it will run on a background thread).
            _ea.StartContinue();

            /*while (RunState.Terminated != _ea.RunState && RunState.Paused != _ea.RunState &&
                   _ea.CurrentGeneration < maxGenerations)
            {
                Thread.Sleep(2000);
            }*/

            // Hit return to quit.
            //Console.ReadLine();
        }
开发者ID:jbrant,项目名称:SharpNoveltyNeat,代码行数:42,代码来源:NoveltyExperimentExecutor.cs

示例4: loadSeedGenomesToolStripMenuItem_Click

        private void loadSeedGenomesToolStripMenuItem_Click(object sender, EventArgs e)
        {
            string popFilePath = SelectFileToOpen("Load seed genomes", "pop.xml", "(*.pop.xml)|*.pop.xml");
            if(string.IsNullOrEmpty(popFilePath)) {
                return;
            }

            // Parse population size from GUI field.
            int? popSize = ParseInt(txtParamPopulationSize);
            if(null == popSize) {
                return;
            }

            try
            {
                // Get the currently selected experiment.
                INeatExperiment experiment = GetSelectedExperiment();

                // Load genome from file.
                List<NeatGenome> genomeList;
                using(XmlReader xr = XmlReader.Create(popFilePath)) 
                {
                    genomeList = experiment.LoadPopulation(xr);
                }

                if(genomeList.Count == 0) {
                    __log.WarnFormat("No seed genomes loaded from file [{0}]", popFilePath);
                    return;
                }

                // Create genome list from seed genomes, assign to local variables and update GUI.
                _genomeFactory = genomeList[0].GenomeFactory;
                _genomeList = _genomeFactory.CreateGenomeList(popSize.Value, 0u, genomeList);
                UpdateGuiState();
            }
            catch(Exception ex)
            {
                __log.ErrorFormat("Error loading seed genomes. Error message [{0}]", ex.Message);
            }
        }
开发者ID:homoluden,项目名称:SharpNEAT,代码行数:40,代码来源:MainForm.cs

示例5: Main

        static void Main(string[] args)
        {
            // Initialise log4net (log to console).
            XmlConfigurator.Configure(new FileInfo("log4net.properties"));

            // Experiment classes encapsulate much of the nuts and bolts of setting up a NEAT search.
            XorExperiment experiment = new XorExperiment();

            // Load config XML.
            XmlDocument xmlConfig = new XmlDocument();
            xmlConfig.Load("xor.config.xml");
            experiment.Initialize("XOR", xmlConfig.DocumentElement);

            WriteHelp();

            // Read key commands from the console.
            for(;;)
            {
                // Read command.
                Console.Write(">");
                string cmdstring = Console.ReadLine();

                // Parse command.
                string[] cmdArgs = cmdstring.Split(' ');

                try
                {
                    // Process command.
                    switch(cmdArgs[0])
                    {
                        // Init commands.
                        case "randpop":
                        {
                            if(null != _ea && _ea.RunState == RunState.Running) {
                                Console.WriteLine("Error. Cannot create population while algorithm is running.");
                                break;
                            }

                            // Attempt to parse population size arg.
                            if(cmdArgs.Length <= 1) {
                                Console.WriteLine("Error. Missing {size} argument.");
                                break;
                            }

                            int populationSize;
                            if(!int.TryParse(cmdArgs[1], out populationSize)) {
                                Console.WriteLine(string.Format("Error. Invalid {size} argument [{0}].", cmdArgs[1]));
                                break;
                            }

                            // Create a genome factory with our neat genome parameters object and the appropriate number of input and output neuron genes.
                            _genomeFactory = experiment.CreateGenomeFactory();

                            // Create an initial population of randomly generated genomes.
                            _genomeList = _genomeFactory.CreateGenomeList(populationSize, 0);
                            Console.WriteLine(string.Format("Created [{0}] random genomes.", populationSize));
                            break;
                        }
                        case "loadpop":
                        {
                            if(null != _ea && _ea.RunState == RunState.Running) {
                                Console.WriteLine("Error. Cannot load population while algorithm is running.");
                                break;
                            }

                            // Attempt to get population filename arg.
                            if(cmdArgs.Length <= 1) {
                                Console.WriteLine("Error. Missing {filename} argument.");
                                break;
                            }

                            // Open and load population XML file.
                            using(XmlReader xr = XmlReader.Create(cmdArgs[1])) {
                                _genomeList = experiment.LoadPopulation(xr);
                            }
                            _genomeFactory = _genomeList[0].GenomeFactory;
                            Console.WriteLine(string.Format("Loaded [{0}] genomes.", _genomeList.Count));
                            break;
                        }
                        case "loadseed":
                        {   
                            if(null != _ea && _ea.RunState == RunState.Running) {
                                Console.WriteLine("Error. Cannot load population while algorithm is running.");
                                break;
                            }

                            // Attempt to get genome filename arg.
                            if(cmdArgs.Length <= 1) {
                                Console.WriteLine("Error. Missing {filename} argument.");
                                break;
                            }

                            // Attempt to parse population size arg.
                            if(cmdArgs.Length <= 2) {
                                Console.WriteLine("Error. Missing {size} argument.");
                                break;
                            }

                            int populationSize;
                            if(!int.TryParse(cmdArgs[1], out populationSize)) {
//.........这里部分代码省略.........
开发者ID:roesslerz,项目名称:SharpBackpropNeat,代码行数:101,代码来源:Program.cs

示例6: Main

        static void Main(string[] args)
        {
            // This program expects certain command line options, that are defined as annotated properties in the NeatSimConsole.Options class
            // We instantiate this class...
            _options = new Options();
            // ... and pass the arguments to this program to the options parser, who uses it to set the properties in 'options'.
            // If the command line options are incorrect, ParseArgumentsStrict prints a help message to the screen and exits...
            if (!CommandLine.Parser.Default.ParseArgumentsStrict(args, _options))
            {
                // ... therefore, this should really never ever happen.
                throw new SystemException("Something went wrong parsing arguments.");
            }
            // Now, all the properties in 'options' are set.

            FastRandom.__seedRng = new FastRandom(_options.Seed);

            // Initialise log4net (log to console). 
            // XmlConfigurator.Configure(new FileInfo("log4net.properties"));

            
            // We instatiate a remote batch simulation experiment, and use the properties set in the XML file to initialize the experiment.
            // The XML file contains properties like the number of generations to run the program for, and the number of individuals in the population.
            // For properties that are not set in the XML file, we initialize default values.
            _experiment = new RemoteBatchSimExperiment();
            var xmlConfig = new XmlDocument();
            try
            {
                xmlConfig.Load("neatsim.config.xml");
            }
            catch (FileNotFoundException e)
            {
                Console.WriteLine(@"Could not find neatsim.config.xml. Aborting.");
                return;
            }

            _experiment.Initialize("NeatSim", xmlConfig.DocumentElement);
            // The XML file cannot contain information about the inital number of connected neurons.
            // We want to initialize our population minimally, and do this by setting an absurdly small initial connections proportion.
            // The number of connected input neurons will always be at least one.
            // Note that there is an absurdly small chance that more than a single neuron will be connected in generation one.
            _experiment.NeatGenomeParameters.InitialInterconnectionsProportion = 0.0000000000001;

            // Create a genome factory with our neat genome parameters object and the appropriate number of input and output neuron genes.
            _genomeFactory = _experiment.CreateGenomeFactory();
            // Create an initial population of randomly generated genomes ('born' in generation 0).
            _genomeList = _genomeFactory.CreateGenomeList(_options.PopulationSize, 0);

            // Create evolution algorithm and attach update events.
            _ea = _experiment.CreateEvolutionAlgorithm(_genomeFactory, _genomeList);
            _ea.PausedEvent += (s, e) => Console.WriteLine(_ea.RunState == RunState.Paused
                                                               ? @"Program is paused"
                                                               : _ea.RunState == RunState.Running
                                                                     ? @"Program is unpaused."
                                                                     : @"Program is in unknown state...");
            _neatSimLogger = new NeatSimLogger(_options.LogFileName + '_' + DateTime.Now.ToString("yyyyMMdd"));
            //
            var nextGeneration = _ea.CurrentGeneration;
            var doneEvent = new AutoResetEvent(false);
            _ea.UpdateEvent += (s, e) =>
                {
                    if (_ea.CurrentGeneration < nextGeneration)
                    {
                        Console.WriteLine("Aborting!");
                        return;
                    }
                    Console.WriteLine(string.Format("gen={0:N0} bestFitness={1:N6}", _ea.CurrentGeneration, _ea.Statistics._maxFitness));
                    SaveChampionGenome();
                    _neatSimLogger.Log(_ea);
                    if (_ea.CurrentGeneration >= _options.Generations)
                    {
                        _ea.Stop();
                        _neatSimLogger.Close();
                        doneEvent.Set();
                    }
                    nextGeneration++;
                };

            // Start algorithm (it will run on a background thread).
            _ea.StartContinue();

            // Hit return to quit.
            //Console.ReadLine();
            doneEvent.WaitOne();
        }
开发者ID:JonMerlevede,项目名称:NeatSim,代码行数:84,代码来源:Program.cs


注:本文中的IGenomeFactory.CreateGenomeList方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。