当前位置: 首页>>代码示例>>C#>>正文


C# IDataset.GetDoubleValue方法代码示例

本文整理汇总了C#中IDataset.GetDoubleValue方法的典型用法代码示例。如果您正苦于以下问题:C# IDataset.GetDoubleValue方法的具体用法?C# IDataset.GetDoubleValue怎么用?C# IDataset.GetDoubleValue使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在IDataset的用法示例。


在下文中一共展示了IDataset.GetDoubleValue方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: FindClosestCenters

    public static IEnumerable<int> FindClosestCenters(IEnumerable<double[]> centers, IDataset dataset, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows) {
      int nRows = rows.Count();
      int nCols = allowedInputVariables.Count();
      int[] closestCenter = new int[nRows];
      double[] bestCenterDistance = Enumerable.Repeat(double.MaxValue, nRows).ToArray();
      int centerIndex = 1;

      foreach (double[] center in centers) {
        if (nCols != center.Length) throw new ArgumentException();
        int rowIndex = 0;
        foreach (var row in rows) {
          // calc euclidian distance of point to center
          double centerDistance = 0;
          int col = 0;
          foreach (var inputVariable in allowedInputVariables) {
            double d = center[col++] - dataset.GetDoubleValue(inputVariable, row);
            d = d * d; // square;
            centerDistance += d;
            if (centerDistance > bestCenterDistance[rowIndex]) break;
          }
          if (centerDistance < bestCenterDistance[rowIndex]) {
            bestCenterDistance[rowIndex] = centerDistance;
            closestCenter[rowIndex] = centerIndex;
          }
          rowIndex++;
        }
        centerIndex++;
      }
      return closestCenter;
    }
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:30,代码来源:KMeansClusteringUtil.cs

示例2: CalculateIntraClusterSumOfSquares

    public static double CalculateIntraClusterSumOfSquares(KMeansClusteringModel model, IDataset dataset, IEnumerable<int> rows) {
      List<int> clusterValues = model.GetClusterValues(dataset, rows).ToList();
      List<string> allowedInputVariables = model.AllowedInputVariables.ToList();
      int nCols = allowedInputVariables.Count;
      Dictionary<int, List<double[]>> clusterPoints = new Dictionary<int, List<double[]>>();
      Dictionary<int, double[]> clusterMeans = new Dictionary<int, double[]>();
      foreach (var clusterValue in clusterValues.Distinct()) {
        clusterPoints.Add(clusterValue, new List<double[]>());
      }

      // collect points of clusters
      int clusterValueIndex = 0;
      foreach (var row in rows) {
        double[] p = new double[allowedInputVariables.Count];
        for (int i = 0; i < nCols; i++) {
          p[i] = dataset.GetDoubleValue(allowedInputVariables[i], row);
        }
        clusterPoints[clusterValues[clusterValueIndex++]].Add(p);
      }
      // calculate cluster means
      foreach (var pair in clusterPoints) {
        double[] mean = new double[nCols];
        foreach (var p in pair.Value) {
          for (int i = 0; i < nCols; i++) {
            mean[i] += p[i];
          }
        }
        for (int i = 0; i < nCols; i++) {
          mean[i] /= pair.Value.Count;
        }
        clusterMeans[pair.Key] = mean;
      }
      // calculate distances
      double allCenterDistances = 0;
      foreach (var pair in clusterMeans) {
        double[] mean = pair.Value;
        double centerDistances = 0;
        foreach (var clusterPoint in clusterPoints[pair.Key]) {
          double centerDistance = 0;
          for (int i = 0; i < nCols; i++) {
            double d = mean[i] - clusterPoint[i];
            d = d * d;
            centerDistance += d;
          }
          centerDistances += centerDistance;
        }
        allCenterDistances += centerDistances;
      }
      return allCenterDistances;
    }
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:50,代码来源:KMeansClusteringUtil.cs

示例3: PCAReduce

    private static double[,] PCAReduce(IDataset dataset, IEnumerable<int> rows, IEnumerable<string> variables) {
      var instances = rows.ToArray();
      var attributes = variables.ToArray();
      var data = new double[instances.Length, attributes.Length + 1];

      for (int j = 0; j < attributes.Length; j++) {
        int i = 0;
        var values = dataset.GetDoubleValues(attributes[j], instances);
        foreach (var v in values) {
          data[i++, j] = v;
        }
      }
      int info;
      double[] variances;
      var matrix = new double[0, 0];
      alglib.pcabuildbasis(data, instances.Length, attributes.Length, out info, out variances, out matrix);

      var result = new double[instances.Length, matrix.GetLength(1)];
      int r = 0;
      foreach (var inst in instances) {
        int i = 0;
        foreach (var attrib in attributes) {
          double val = dataset.GetDoubleValue(attrib, inst);
          for (int j = 0; j < result.GetLength(1); j++)
            result[r, j] += val * matrix[i, j];
          i++;
        }
        r++;
      }

      return result;
    }
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:32,代码来源:ClusteringSolutionVisualizationView.cs


注:本文中的IDataset.GetDoubleValue方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。