本文整理汇总了C#中IBigInteger.ShiftRight方法的典型用法代码示例。如果您正苦于以下问题:C# IBigInteger.ShiftRight方法的具体用法?C# IBigInteger.ShiftRight怎么用?C# IBigInteger.ShiftRight使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类IBigInteger
的用法示例。
在下文中一共展示了IBigInteger.ShiftRight方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ApproximateDivisionByN
/**
* Approximate division by <code>n</code>. For an integer
* <code>k</code>, the value <code>λ = s k / n</code> is
* computed to <code>c</code> bits of accuracy.
* @param k The parameter <code>k</code>.
* @param s The curve parameter <code>s<sub>0</sub></code> or
* <code>s<sub>1</sub></code>.
* @param vm The Lucas Sequence element <code>V<sub>m</sub></code>.
* @param a The parameter <code>a</code> of the elliptic curve.
* @param m The bit length of the finite field
* <code><b>F</b><sub>m</sub></code>.
* @param c The number of bits of accuracy, i.e. the scale of the returned
* <code>SimpleBigDecimal</code>.
* @return The value <code>λ = s k / n</code> computed to
* <code>c</code> bits of accuracy.
*/
public static SimpleBigDecimal ApproximateDivisionByN(IBigInteger k,
IBigInteger s, IBigInteger vm, sbyte a, int m, int c)
{
int _k = (m + 5)/2 + c;
IBigInteger ns = k.ShiftRight(m - _k - 2 + a);
IBigInteger gs = s.Multiply(ns);
IBigInteger hs = gs.ShiftRight(m);
IBigInteger js = vm.Multiply(hs);
IBigInteger gsPlusJs = gs.Add(js);
IBigInteger ls = gsPlusJs.ShiftRight(_k - c);
if (gsPlusJs.TestBit(_k-c-1))
{
// round up
ls = ls.Add(BigInteger.One);
}
return new SimpleBigDecimal(ls, c);
}
示例2: TauAdicWNaf
/**
* Computes the <code>[τ]</code>-adic window NAF of an element
* <code>λ</code> of <code><b>Z</b>[τ]</code>.
* @param mu The parameter μ of the elliptic curve.
* @param lambda The element <code>λ</code> of
* <code><b>Z</b>[τ]</code> of which to compute the
* <code>[τ]</code>-adic NAF.
* @param width The window width of the resulting WNAF.
* @param pow2w 2<sup>width</sup>.
* @param tw The auxiliary value <code>t<sub>w</sub></code>.
* @param alpha The <code>α<sub>u</sub></code>'s for the window width.
* @return The <code>[τ]</code>-adic window NAF of
* <code>λ</code>.
*/
public static sbyte[] TauAdicWNaf(sbyte mu, ZTauElement lambda,
sbyte width, IBigInteger pow2w, IBigInteger tw, ZTauElement[] alpha)
{
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
IBigInteger norm = Norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.BitLength;
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;
// The array holding the TNAF
sbyte[] u = new sbyte[maxLength];
// 2^(width - 1)
IBigInteger pow2wMin1 = pow2w.ShiftRight(1);
// Split lambda into two BigIntegers to simplify calculations
IBigInteger r0 = lambda.u;
IBigInteger r1 = lambda.v;
int i = 0;
// while lambda <> (0, 0)
while (!((r0.Equals(BigInteger.Zero))&&(r1.Equals(BigInteger.Zero))))
{
// if r0 is odd
if (r0.TestBit(0))
{
// uUnMod = r0 + r1*tw Mod 2^width
IBigInteger uUnMod
= r0.Add(r1.Multiply(tw)).Mod(pow2w);
sbyte uLocal;
// if uUnMod >= 2^(width - 1)
if (uUnMod.CompareTo(pow2wMin1) >= 0)
{
uLocal = (sbyte) uUnMod.Subtract(pow2w).IntValue;
}
else
{
uLocal = (sbyte) uUnMod.IntValue;
}
// uLocal is now in [-2^(width-1), 2^(width-1)-1]
u[i] = uLocal;
bool s = true;
if (uLocal < 0)
{
s = false;
uLocal = (sbyte)-uLocal;
}
// uLocal is now >= 0
if (s)
{
r0 = r0.Subtract(alpha[uLocal].u);
r1 = r1.Subtract(alpha[uLocal].v);
}
else
{
r0 = r0.Add(alpha[uLocal].u);
r1 = r1.Add(alpha[uLocal].v);
}
}
else
{
u[i] = 0;
}
IBigInteger t = r0;
if (mu == 1)
{
r0 = r1.Add(r0.ShiftRight(1));
}
else
{
// mu == -1
r0 = r1.Subtract(r0.ShiftRight(1));
}
r1 = t.ShiftRight(1).Negate();
i++;
}
//.........这里部分代码省略.........
示例3: WindowNaf
/**
* Computes the Window NAF (non-adjacent Form) of an integer.
* @param width The width <code>w</code> of the Window NAF. The width is
* defined as the minimal number <code>w</code>, such that for any
* <code>w</code> consecutive digits in the resulting representation, at
* most one is non-zero.
* @param k The integer of which the Window NAF is computed.
* @return The Window NAF of the given width, such that the following holds:
* <code>k = −<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
* </code>, where the <code>k<sub>i</sub></code> denote the elements of the
* returned <code>sbyte[]</code>.
*/
public sbyte[] WindowNaf(sbyte width, IBigInteger k)
{
// The window NAF is at most 1 element longer than the binary
// representation of the integer k. sbyte can be used instead of short or
// int unless the window width is larger than 8. For larger width use
// short or int. However, a width of more than 8 is not efficient for
// m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
// 1000 Bits are currently not used in practice.
sbyte[] wnaf = new sbyte[k.BitLength + 1];
// 2^width as short and BigInteger
short pow2wB = (short)(1 << width);
IBigInteger pow2wBI = BigInteger.ValueOf(pow2wB);
int i = 0;
// The actual length of the WNAF
int length = 0;
// while k >= 1
while (k.SignValue > 0)
{
// if k is odd
if (k.TestBit(0))
{
// k Mod 2^width
IBigInteger remainder = k.Mod(pow2wBI);
// if remainder > 2^(width - 1) - 1
if (remainder.TestBit(width - 1))
{
wnaf[i] = (sbyte)(remainder.IntValue - pow2wB);
}
else
{
wnaf[i] = (sbyte)remainder.IntValue;
}
// wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]
k = k.Subtract(BigInteger.ValueOf(wnaf[i]));
length = i;
}
else
{
wnaf[i] = 0;
}
// k = k/2
k = k.ShiftRight(1);
i++;
}
length++;
// Reduce the WNAF array to its actual length
sbyte[] wnafShort = new sbyte[length];
Array.Copy(wnaf, 0, wnafShort, 0, length);
return wnafShort;
}